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APPENDIX A

MAINTENANCE OF EARTH-POINTING ATTITUDE

1. INTRODUCTION

The object of this appendix is tg summarize the basic concepts of
the conical scanning system proposed for the Advanced Planetary Probe/_:.\l
and to derive some of the expressions used in Section 4.4 of Volume 2,
‘The concept incorporates an earth-based transmitting station, which gen-
erates a constant carrier signal, and a receiver on the spacecraft, with
the antenna ‘rotating about the axis of symmetry. When the signal coming
from the earth is a constant carrier, an amplitude-modulated signal
results when the angle between the spin axis and the spacecraft-to-earth

line is not zero.

“The conical scanning system thus incorporates a paraboloidal
anten\na. with an offset feed, a frequency conversion stage, an intermediate
frequency amplifier, and a linear demodulator. A simplified block dia-
gram of the system is given in Figure A-1. The lateral offset of the
antenna feed causes a deviation of the beam center line from the symmetry
axis z-z, which is the spin axis of the spacecraft., Therefore, the center
line of the antenna beam pattern will carry out a conical scanning motion
about the spin axis with an angular velocity equal to the spin rate W,

The half-angle of this cone (squint angle) is determined by the offset

distance of the antenna feed.
2. RADIATION PATTERN

In the following analysis the antenna dimensions are assumed very
large as compared to the wave length of the incoming signal. Thus
electromagnetic wave propagation can be approximately analyzed by

means of geometrical optics.

Paraboloidal reflectors with uniform illumination have the property
of producing a constant phase field on a plane perpendicular to the
symmetry axis containing the focal point. In Figure A-2 it is shown

that, for a parabola,

FM + MP = 2f = constant



A

-r=— PRIMAR RCE
- I Y SOURC

IP/FOCAL PLANE
I

/
B‘-——» MIXER

ANTENNA

IF LINEAR >
AMPLIFIER DEMODULATOR

\
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Therefore a wave originating from a source placed at F will give fields

at any point on the focal plane lagging the ''current' in the source by

fo%%r_

For an ideal point source, then, the amplitude and phase of the field on
the focal plane are constant. Under these assumptions, the radiation
pattern of an ideal paraboloidal antenna will be equal to that of a circular
aperture with constant amplitude and phase. The field pattern of the
circular aperture with uniform illumination is given in normalized form

®
by

R(u) = A, (u)
where
Ap(u) = lamda function of the pth order and argument u
2mx
u=—2 sin 0
@ = angle measured from the beam axis
x = radius of the aperture
N = wave length

If the illumination is tapered down toward the edge of the aperture
there will be a decrease in gain and in increase in beamwidth, but the
amplitude of the side lobes will be reduced, which in some cases may be
a desirable feature. For the particular cases in which the aperture field
distribution is of the form

P
(1-72); p=1,2, ...

where

r = £
X
o

p = radius vector from the center of the aperture

*S. Silver, 'Microwave Antenna Theory and Design,'" MIT Radiation
Laboratory Series, Vol. 12, 1949, pp 192-95.
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the radiation pattern is given by

_ 1
Ro(u) = 51 App (@)
Pattern characteristics as functions of p are given in Table A-1, where
the gain factor is a relative measure of antenna gain with respect to the
maximum theoretical gain of a circular aperture of the same dimensions
with uniform illumination. The half-power beamwidth is defined as the

angle between half-power points in the antenna pattern.

Table A-1. Pattern Characteristics as
a Function of p

. ps First Side
Gain Half-Power Position of
P Factor Beamwidth First Zero Lobe, db bel'ow
Peak Intensity
0 {.00 1.02 =2 sin~ 1 1222 17.6
2x 2X
o
{ 0.75 1,27 = sin~1 1,632 24.6
2X 2X
o o
2 0.56 1,47 sin~1 2032 30.6
2x 2%
o o
1N . -1 2.42\
3 0.44 i 65 Tx—— sin -7}{—— -
o o
4 0.36 1,81 =2 sin~1 279 --
ZXO 2xo

Assuming p = 1, the radiation pattern is
R, (u) = = A (u)
1 22

For small values of u, the function Az(u) can be approximated by a

gaussian function of the form

2 2




as shown in Figure A-3, where m = 0.305; the error is of the order of

‘ 12 percent in the range 0< u < 3,75,

A
0.8

,
T

0.4

-0.093 u
e
V1 =
i A, ()
0
0 ] 2 3 4 5
u
20%
e-0 093y —A2(u) /
10% 1% ERROR = 100
A2 (v) /

ERROR
=)
(

(NOTE SCALE
CHANGE)
-2%

Figure A-3., Gaussian Approximation
The half-power beamwidth will be approximately

BW = 0.635 ;}_ (rad) = 36.4 2 (deg)
(o] (o]

Therefore, in the interval discussed above
2
)

_ 1 _-(0.305u
Ri(u) =>e

Substitution of the definition of u into this equation yields

1 v~e

9)]



where

70

YT BW (deg)
and 0 has been assumed to be small.
3. THE CONICAL SCAN PROCESS

The geometry of the conical scan process is illustrated in
Figure A-4, where the z axis is assumed to coincide with the spin axis

of the spacecraft. The { axis, or beam axis, is the symmetry axis of

z 4

Figure A-4. Geometry of the Conical Scan Process

the antenna radiation pattern and is assumed to be at an angle a from the
spin axis. The spacecraft-to-earth line m is denominated ''target axis, "

and its angle ¢ with respect to the spin axis is the attitude error angle.

In a sphere of unity radius, the three planes determined by the z,
¢, and m axes form a spherical triangle as shown in Figure A-5. An
approximate expression for 0 in terms of a, B, and y can be obtained

from the cosine law
cos a =cos bcos c + sinb sinc cos y

which, after squaring and substituting, becomes




. 2 .
sin” a = sm2 b + sin2 c - %sin 2b sin 2c cos vy

2

- (1 + cos2 y) sin2 b sin“c

| I
>
\
\
\
\
\

OV\_
\
\

Figure A-5. Spherical Triangle

For small arcs a, b, ¢ (or angles a, B, 9) this expression reduces to

02 -a?+p%-2apcosy

which, when substituted into the expression for Ri(O) yields

2, 2 2 2
Ri(g) —e”V (o + ¢ )e2v ae cos vy

Expansion of the right-hand side into a series of modified Bessel functions

gives

Ri(0)=e IO(ZVZ ae)+2 T :[n(2v2 ae) cos n y

n=1

NI o ]

If the following substitutions are made
Y=o-y=e -y
where

w_ = spin angular rate

2, 2 2
Ri(e) = e’ (@™ + e )IO(szae)



I (sz ae)
n
mn(e) =2 —
IO(Zv ae)

the radiation pattern function becomes
oo

1+ = mn(e) cos[ n(wst - llJ)] ‘

n=1

R{e) =ﬁ(e).

The voltage at the antenna termination will be then

oo
e(t) = kiE R){t+ = mn(e) cos [n(wst - q;)]] cos wct

n=1

where w_ is the carrier angular frequency and k, is a proportionality

constant.

This expression shows that conical scanning produces an amplitude
modulation of the incoming signal which is a function of the error-angle.
The carrier amplitude is kE R(e), and the modulation index corresponding

to the n'® harmonic of the sign frequency is mn(e).

Values of the modulation index in terms of the parameter sz ae

are plotted in Figure A-6 for n up to 6.

The AC component of the demodulator output will be given by

Qo
e (t) = k,ER(e) =

n=1

mn(e) cos [n(wst - q,)]

The peak value occurs when t = ¢/ws, which is the instant in which
the spin, beam, and target axes are in the same plane and the angle
between the beam and target axes is minimum. Thus, from the previous

equation,

_ [e's)
E R(¢) = mn(e)
n=1

& =e —LP—>=k
o o(ws 2

The peak negative value of eo(t) occurs when t = q,/(ws) + m, and is

given by

v _ o0
¢, = eo(wi + n): ILE R(e) = (1) m(e)

s n=1
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Figure A-6. Modulation Indices Versus 2viéac

Relative values of positive and negative peaks are plotted in Figure A-7

as functions of the parameter 2v~ ae.

For small values of the angular error ¢, the expression for e can
be expanded in power series about the point ¢ = 0, and the following
approximate expression results when high order terms are dropped:

VZCLZ

éo(e) = ZkZE e vV ae

which shows that, for values of ¢ in the range of interest (less than
1 degree), the angular error is approximately proportional to the peak

value of the demodulator output signal.

In the conical scan system proposed for the Advanced Planetary
Probe a measure of the angular error is required only to implement a

dead zone. As long as the error is above a specified threshold, the only
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Figure A-7. Relative Value of Positive and Negative
Peaks of the Demodulation Output Signal

information required by such a system is the exact time at which the
beam axis is closest to the target axis or equivalently to determine the
signal zero crossing. The electronic control system logic determines
the time at which a rising zero crossing occurs and generates a

triggering pulse with a fixed delay.
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APPENDIX B

TECHNIQUES FOR CONICAL SCAN SIGNAL PROCESSING

1. INTRODUCTION

This appendix provides general background on conical scan signal
processing techniques while Appendix C is a specific study of the use of
the medium-gain antenna for fine pointing. This appendix addresses the
problem of conical scan signal processing in the presence of significant
amounts of noise. The selected solution, using an offsetable feed on the
high gain antenna, avoids this problem by providing a large signal to
noise margin; however, this choice is based upon sone of the factors
covered in these two appendices. In particular, this appendix.considers
the dead zone limits to be based on noise considerations whereas in the
actual implementation, dead zone limits are controlled by the minimum
pulse gas jet precession step size and it is necessary that the correspond-
ing dead zone be always larger than the dead zone determined on signal-to-
noise ratio considerations. Thus the dead zone region is based upon

conical scan signal amplitude independent of noise.

The coherently demodulated conical scan signal, as discussed in
Section 4.4 of Volume 2, is approximately a sinusoid with the amplitude
proportional to the RF pointing error. The information that has to be ex-
tracted from this wideband signal embedded in white gaussian noise is the
time when the target axis is closest to the antenna beam center, This
corresponds to the point where the value of the conical scan signal reaches
the positive maximum and can be determined by measuring the axis cross-
ing time or phase of the sinusoid. No matter how sophisticated a phase
estimator is used, for small enough pointing errors, due to the thermal
noise, the phase measurement will not be accurate and will result in gas
waste. Since the phase estimation accuracy is determined by the SNR, a
threshold SNR should be selected below which the attitude correction proc-
ess is terminated, Of course, this threshold SNR comparator can also be
used to initiate attitude correction events automatically, The comparison
of RMS signal to RMS noise is preferred over the simpler signal detection

scheme because the noise spectral density may not remain constant during

11



the mission. For instance, there will be short periods of time when the

spacecraft antenna is pointed at the sun or at Jupiter, with the resulting
increase in the system noise temperature. In summary, the phase of the
coherently amplitude demodulated conical scan signal should be estimated
and the signal compared to the noise for the purpose of establishing

deadzone.

To facilitate tradeoffs involving the signal processing and antenna
requirements, it is necessary to investigate several phase measurement
techniques. Signal processing methods ranging from optimum maximum
likelihood estimators, MLE, to simple minded zero-crossing detectors
have been briefly considered. The phase-locked loops, PLL, and the
digital tracking filters appeared most promising practical mechanizations

and, therefore, have been investigated in more detail.
2. MAXIMUM LIKELIHOOD PHASE ESTIMATOR

One class of optimum estimation procedures (optimum in the sense
that the posteriori probability density is maximized) is known as the

maximum likelihood. More general techniques based on minimization of

average risk (Bayes) are available. However, the MLE are preferred to
Bayes systems because the former can be derived more easily and in

many cases are efficient and unbiased.

The MLE for the case of a known signal is shown in Figure B-l.*
In deriving this mechanization, it is assumed that the phase is fixed, or
does not change significantly during time interval T. Such is the case in
this application. Note that the conical scan signal frequency has to be
externally supplied, presumably by a star sensor. The most serious
problem with the MLE is the implementation of the inverse tangent function.
The lower bound on the estimated phase variance, mean square phase

error, based on the Cramer=-Rao inequality is given by o

* : . . .
D. Slepian, " Estimation of Signal Parameters in the Presence of
Noise, " Trans. IRE, PGIT-3, 68 (March 1954).
' 'D.' D. Carpenter, " The Problem of Estimating the Unknown Phase of
a Sine Wave Signal in Gaussian Noise, " TRW 9332.3-347,
8 February 1966.

12




V‘z‘ES SIN wg t

STAR
OSCILLATOR [€—SENSOR

— [/ —J

V2 E.SIN(w_ t+8) +n (1) _
S s TAN"! X —> 8

X

4

90 DEG
PHASE SHIFT

V—f'ES COS wg t

T x
JI;‘

Figure B-1. Maximum Likelihood Phase Estimator

—— . 2
(6 — e)2 2 Var (8) = [1 +2b (0)]

Es T
2 T——
o
where
No = one-sided noise spectral density
2b(0
b'(6) = —2"‘(6")—
A
b(B8) = 6 - 0 = bias

A A
The probability density function for 6, p(6), has also been derived. How-
ever, b'(6) cannot be expressed in a closed form. For high SNR it can be

shown that b(0) approaches 0, so that the lower bound further simplifies to

[

A
Var(6) = > -
Es T

N
o

2

The above bound, for the purpose of comparison with mean square errors
derived with suboptimum measurement techniques, can be expressed in

terms of power signal-to-noise ration, S/N, as

13



A 1
Var (0) =

*TTE
N
where the noise, N, is measured in the equivalent LPF of bandwidth

1/T Hz.
3. SUBOPTIMUM PHASE MEASUREMENT TECHNIQUES

Because of the complexity of the MLE, simpler phase measurement
techniques have been investigated. It appears that for high SNR it should
be possible to estimate phase accurately with a simple axis crossing
detector. Thus, the phase estimation problem reduces to the filtering
problem. Since the required bandpass filter bandwidths are of the order
of 0. 01 Hz and the spinning frequency may vary as much as 0.024 Hz
(+ 20 percent from center frequency of 0. 12 Hz), passive filters cannot
be used. One possibility is to use a bandpass filter whose frequency is

controlled by an auxiliary star sensor. Another possibility is a PLL.

The PLL actually accomplishes more than just bandpass filtering. * The
remaining problem is to derive mean square phase error variance for
high SNR (perhaps above 10) and to compare these with the lower bound

for the MLE.

For a PLL it is well known that the mean square phase error for

high SNR is given by

1

Var(é\) = —e—
2N

where N is measured in the PLL noise bandwidth. Therefore, a PLL
with the noise bandwidth of 1/T Hz performs as well as the more complex

MLE.

For the digital tracking filter, the output is a sinusoidal signal in
noise. In this case, the mean square noise can be computed by assuming
ideal axis crossing detector. In practice, axis crossing is usually

accomplished by squaring (waveform) the sinusoidal signal.

"T. J. Stephens, "Conical Scan RF Angle Tracking Systems, "
TRW 7331.5147, 22 June 1966.

14




Thus, it has been demonstrated that if a conical signal-to-noise
power ratio of the order of 10 is available or can be achieved with a PLL
or digital tracking filters, the RMS phase error for these implementations
is equal to the minimum theoretical error possible with the MLE. If the
SNR cannot be sufficiently improved with the PLL or digital tracking
filter, in principle for individual RMS phase errors less than 90 degrees
the measurement accuracy can be further improved by averaging axis
crossings over many periods. Unfortunately, simple electronics to per-
form this averaging could not be devised. If a high-gain antenna is used
for RF tracking, even at 10 AU, SNR higher than 10 in 1-Hz bandwidth
will be obtained. Therefore, with a high-gain antenna no complex signal

processing is required.

4. SIGNAL-TO-NOISE COMPARATORS

As discussed in Secticn 1, to establish deadzone in an optimum
fashion, signal-to-noise powers have to be compared. In case PLL is

used, coherent comparator can be mechanized as shown in Figure B-2.

90 DEG
PHASE j&——— FROM PLL
SHIFT
J2Eg SIN (ug t+6)
J2 Eg SIN (wg t+6) n (2 LPF 1 f T X
BW =B 17, (SIGNAL)

DECISION

2

HPF LPF
f =f BW =B
c s 1

Figure B-2. Coherent Signal-to-Noise Comparator

The output from the signal channel, for sufficiently long T, is the signal
power. For the noise channel, since the signal is removed by the high-
pass filter, the output is approximately proportional to noise density.
Thus, the circuit of Figure B-2 effectively compares signal power to
noise spectral density. To show that this is indeed the case, the means

and variances for the random variables x, and y, (defined in Figure B-2)

15



have been computed. These parameters, derived under numerous

simplifying assumptions, are given by

x, = E°
N, E;
Var (x,} = >
o= Ny B
2
Var (y,) = 2N_ B B1

where N0 is the input noise, n(t), density, and the other parameters are
defined in Figure B-2. Therefore, for large T the noise from the upper
channel is almost completely filtered out, while the lower channel output
is proportional to the noise density. When PLL is not available, a non-

coherent detector, as illustrated in Figure B-3, can be used. In

2 X
LPF ) > 2
— > T LPF
BW = 1 Hz ( (SIGNAL + NOISE)

J2 E¢ SIN (ug t +8) #n (1) +

DECISION

y2

2 ATTENUATOR
BPF (2 x NOISE)
1 8w = kHz >—< )—> LPF l;

Figure B-3, Noncoherent Signal-to-Noise Comparator

Figure B-3, the upper channel output contains both signal and noise,

while the lower channel contains no signal but twice as much noise as the
upper channel. To simplify noncoherent comparator implementation, an
integrate and dump filter in the noise channel has been replaced by a low-

pass filter.

The most appropriate decision strategy, as in the case of conven-

tional radar, is the Neyman-Pearson criterion. In this strategy the ‘

16




threshold is chosen to provide selected false detection probability, i.e.,
probability that the SNR is below threshold although a decision is made
that it is above threshold. The strategy that minimizes false rejection
probability (probability that the SNR is above threshold but a decision is
made that it is below threshold) is said to fulfill Neyman-Pearson
criterion. The false detection error results in unnecessary use of
attitude control system gas, while the false rejection error results in
stopping the attitude control process before the pointing error is reduced
to the specified valﬁe. It appears that the false detection probability is
more expensive in this application and, therefore, should be chosen to

set the threshold.

Once the false detection probability is chosen, the threshold is

determined from the following

P1 = f p(z,) dz,
Z
where
P1 = probability of false detection
Z1 = threshold
z, = Xy =V

p(z,) = probability density function of z

The random variables x, and y, are defined in Figure B-2, Unfor-
tunately, the random variable y, after the square-law detector is not
gaussianly distributed. The derivation of the probability density for y,,
therefore, is difficult and cannot be obtained in closed form. For the non-
coherent detector neither X, mor y, is gaussianly distributed. Although
it appears that approximate probability densities can be found for vy,, Yoo
and X55 and therefore for z, and Z5 the problem is outside the scope of
this project.

17



5. SIGNAL DETECTORS

For sufficiently high input SNR at worst noise condition (at least 10),
signal detectors may be sufficient. These signal detectors can be imple-
mented by the upper channels of Figures B-2 and B-3. In the case of the

coherent detector, threshold can be easily determined from

2
> s
p1 = 1 4 e du
Ve -X
o
X
where
- . E 2
* = s > \1/2
o = [Var (x)]i/zz_lil_o—Es——
x : 2T
X = threshold setting

For example, to obtain a false detection probability of 0.997, from the

error function table it is found that

> 1/2
2 Estu Nom

+ 2.75

X =Egry 5T

where ESTH is the RMS signal at threshold and NoM is maximum noise

density at the detector input. For threshold SNR, 2

ESTH NoM/ 2T, equal

to 10, threshold setting reduces to
_ 2

X=1.87 ESTH
Befote the signal can be detected with probability of 0.5, the RMS signal
has to increase to

ES =1.37 ESTH
This points out a potential problem when the same detector is also used
to automatically initiate the attitude correction process. For low false

detection probability, there is a region of signal amplitudes for which the .
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attitude correction process will be continuously started and terminated

before complete correction is achieved. One way to avoid this problem is

to incorporate a second detector, with substantially higher threshold, for
the purpose of initiating attitude correction. Another possibility is to
utilize the receiver in-lock signal as the attitude correction event. How-
ever, since the ground-to-spacecraft link is also used for command
transmission and two-way doppler tracking, this does not appear to be

attractive.

Finally, if sufficiently high SNR (at least 10) can be obtained by
filtering, a simple level crossing detector can be used for establishing
zone. To obtain at threchnld a detection probability of 0.997, the

threshold should be set at

1/2
V—J'EE {4275 Nom®Bo
- STH \[2— z

ESTH

where Bo is the bandwidth of the filter preceding the level detector and
NoM is the maximum noise density at the filter input. For threshold

2 . . .
SNR, ESTH/NOMBO’ of 10, the threshold setting is given by

V=213 ESTH

For a detection probability of 0.5, RMS signal amplitude has to increase

to

Es =1.63
Comparison of the signal amplitude for the level detector and the coher-
ent RMS detector indicates that the latter is superior. The above
compari}son is based on the assumption that Bo = 1/2T. In general, for
the RMS detectors since the filtering is done after detection, consider-
ably lower effective bandwidth, 1/2T, than B_ can be achieved.
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6. SUMMARY

It has been demonstrated that a PLL can be mechanized more
simply than a maximum likelihood estimator, MLE, for measurement of
phase or the time when the signal reaches positive maximum. Futher-
more, for the SNR above 10 in the PLL noise bandwidth of 1/T Hz, the
RMS phase error with the PLL signal processing is equal to the lower
bound on RMS error for the MLE. Similar results hold for the digital
filter followed by a simple axis crossing detector. The digital filter,
however, requires an auxiliary star sensor to provide the conical scan
frequency. For the PLL, on the other hand, the maximum possible
frequency deviation that can be tolerated is only about 0.0175 Hz. In
addition, some attitude control system disturbance, for instance those
occurring during the attitude correction process, may cause the PLL to

drop lock.

In general, the MLE can be mechanized to accept considerably
lower input signal-to-noise density ratios than the suboptimum phase
measurement techniques. For the PLL and digital tracking filters, the
filtering is of the bandpass type. For the MLE, filtering following
detection is of the low-pass type and appreciably lower bandwidths can be

achieved than with the bandpass filters.

For establishment of deadzone, the optimum processing involves
signal-to-noise comparison. Two implementations of this comparator,
one coherent when PLL is used and a second one noncoherent, have been
proposed. Although mechanization of these comparators is simple, for
high worst case input SNR (at least 10) they can be further simplified to
RMS signal detectors. Finally, the level detectors are considered and
it is demonstrated that the coherent RMS detector is superior to the level
detector. Although the threshold as a function of false detection prob-
ability for the noncoherent detector was not derived, it should also be
superior to level detector. For this reason it is recommended that the

RMS detector be used for establishing deadzone.

The false detection probability could be related to the threshold
setting only for the coherent detector and the level detector. For other
cases, due to the nongaussian process, the threshold cannot be easily

related to the false detection probability.
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APPENDIX C

THE USE OF THE HELIX ANTENNA FOR FINE POINTING

1. INTRODUCTION

This appendix is included to indicate the problems involved in using
the helix antenna for fine pointing. These problems justified switching to
the offsettable feed on the high-gain antenna, providing high signal-to-
noise ratio and allowing simple zero crossing detector for phase informa-
tion to fire the gas jets for earth (DSIF station) tracking. This relegated

the medium-gain antenna to the role of an acquisition antenna,
2, PROCESSING REQUIREMENTS

Use of the helix antenna to generate the conical scan signal results
in low signal-to-noise ratios for small angular tracking errors. The sig-
nal must be processed by narrow bandpass filtering to achieve the required
signal-to-noise ratio, For proper operation of the attitude control elec-
tronics, the SNR of the conical scan signal must be at least 10. 54 db.

The normalized noise power spectral density is

N
_ B
=5
where
N/B = noise power spectral density in watts/Hz

S

received signal power
The SNR at the output of a bandpass filter with noise power bandwidth

BN is

For ¢ =+10.26 db/Hz, the required noise power bandwidth of the filter

is

BN = «20,0db Hz or 0.0l Hz

21



The variation of the spacecraft spin rate is expected to be +20 per-

cent over the mission time. For a nominal spin rate of 5 rpm, the coni- .

cal scan signal frequency will lie in the range 0.083 +0,017 Hz. Since the
bandwidth of the filter is 0.01 Hz, the center frequency must change to

accommodate the variation in the spin rate.

Center frequency tracking is accomplished automatically if the
filter is a phase-lock loop. For the digital filter, a clock signal at a
multiple of the spin rate is provided to maintain the center frequency at
the spin rate. A DC voltage level proportional to the amplitude of the
conical scan signal is required as a measure of the RF angle tracking

error,

Since input signal frequency can vary +20 percent of its nominal
value during the mission, the center frequency of the filter must be vari-
able to accommodeate these input signal frequency changes. This aspect
precludes the use of a fixed frequency bandpass filter. The required
filter is of the frequency tracking type. Two types were studied: a phase

lock loop and a digital bandpass filter with variable center frequency.

3. PHASE-LOCK LOOP

A phase-lock loop is a servomechanism type of feedback circuit in
which a locally generated waveform tracks an input signal in frequency
and phase. A block diagram of the conical scan signal processing system

incorporating a phase lock loop is shown in Figure C-1.

BANDPASS
INPUT—  FILTER LIMITER PHASE LooP
BW = 0,188 Hz DETECTOR FILTER
\
COHERENT COUNTDOWN
DETECTOR P veo

a CONICAL SCAN
7 SIGNAL TO ACS

LOW PASS CONICAL 90 DEG

FILTER L SCAN PHASE
fc = 0.0 Hz AMPLITUDE SHIFT

TO ACS

Figure C-1. Conical Scan Processor Using Phase-Lock Loop
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The vbltage controlled oscillator generates a signal whose frequency
is a multiple of the input signal frequency. This frequency is divided by
the flip-flop counter chain. The result is a signal whose frequency is
near the frequency of the input signal. The phase detector compares the
phase of the VCO signal with that of the input signal. An error signal is
produced which is filtered by the loop filter, then used to control the fre-
quency of the VCO, The error signal changes the VCO frequency in the
direction which reduces the phase error. Inthe steady state, the phase

error is reduced to near zero.

The bandpass filter and limiter preceding the loop fix the amplitude
of the loop input signal making the loop insensitive to input signal ampli-
tude changes. The loop output signal is phase shifted 90 degrees and used
to coherently detect the conical scan signal. After low pass filtering, a
voltage level representing the amplitude of the conical scan signal results
at the output. This signal amplitude level and the phase-lock loop output

function are used to control the attitude control system.

3.1 Loop Performance Requirement

The noise corruption of the phase-lock loop output is evidenced in
the form of phase jitter. The variance of the output phase, O'Ig, is re-
lated to the loop SNR as follows:

2 1[N N
GP = -E(S—) for (g—) < 0.1

2B

2B, L

where (N/S)2B is the noise to signal ratio in the two-sided loop noise
bandwidth, ZBL. Let

N = -10.54 db
S/op
L

2
Then op = 0.044. The RMS phase error is °p = 0.21 radian RMS or

op = 12 deg RMS expressed in degrees.

Thus, the required filter bandwidth, 0.01 Hz, which was determined
in Section 2, will produce an output signal having phase jitter of 12 degrees
RMS at the assumed input SNR. This value of phase error is sufficiently

low for proper attitude control operation,
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3,2 Second Order Phase-Lock Loop

The second order phase-lock loop was chosen because it exhibits
minimum steady state phase error to a frequency step at the input pro-
vided that the open loop gain, Go, is large, If a first order loop were
used, large steady state phase errors would be produced as the space-

craft spin rate varied.

*

The desired closed loop phase transfer function for the second order

loop is
V2
8 (s) 1+ 5~ S
H(s) = Ho = 2 va
i s V25,8,
B B
o o
where
Go(s) = phase of loop output
9.1(5) = phase of loop input signal
B = loop undamped natural frequency

(o]

It is readily seen that the above equation describes a second order servo-
mechanism with undamped natural frequency, B, and damping factor,

¢ = .%_7 The open loop transfer function is

v2
1+FS
H(s)=B2( o)
o o SZ

The open loop gain, Go’ is the product of the loop component scale factors:

_ -1
Go = ZﬂaKm KVCO sec
o = limiter suppression factor
Km = K|es| , loop multiplier constant, proportional to the

magnitude of the loop input signal,

VCO VCO constant, Hz per volt,
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The open loop transfer function in terms of the loop components is
H (S) = G _F(S)&
o o S

where F(S) is the loop filter transfer function. The 1/S factor results
from the fact that the change in phase of the VCO output signal is the
integral of the VCO frequency change.

The loop {filter transfer function will be:

1+7,8
F(8) = —p—5—

-

]

and
G'O
n =;z
(o)
Va2
= 5
(o]

for realization of the optimum transfer function.

The noise power bandwidth, ZBLO’ of the loop is determined by the

integral
© . 2
6, (Gu
2B =
w | |otw
and for the optimum loop is
3Bo
ZBLo = = 1,06 Bo Hz

2z

Under noise conditions, the signal amplitude at the limiter output is
suppressed by a factor related to the SNR at the limiter input, (S /N)i' The
relationship between the limiter suppression factor, a, and (S /N)i has

%
been determined by Davenport,

%
W.B. Davenport, Jr., ""Signal-to-Noise Ratios in Bandpass Limiters, "
J. Appl. Phys., 24 (June 1953), 720-27.
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For small input signal-to-noise ratios, the relationship can be

approximated as follows:

The loop gain, Go’ varies directly as the loop input signal ampli-
tude. Therefore, a knowledge of @& is necessary to determine the loop
parameters at the design point. The design method is to determine o
the suppression factor at the lowest SNR at which the loop must operate.
The other loop parameters are then calculated for this condition, result-

ing in an optimum design at the minimum SNR.

If the loop is initially out of lock, with a frequency difference exist-
ing between the VCO and the input signal, the VCO frequency will change
in the direction of the input signal frequency until the frequencies are the
same and phase acquisition occurs. For a loop with a perfect integrator
in the loop filter, the theoretical pull in range is infinite. However,
Viterbi* has shown that, for a loop with an imperfect integrator, the pull
in range is limited by the time constant of the integrator. In this case,

the loop filter transfer function takes the form:

(1+7,8)
F8) = Ay

where T 3 is the limiting time constant of the integrator. For the opti-
mum loop having this loop filter characteristic, the approximate pull in

frequency range, fp’ is

f~5‘3 %o T3
]

+1 H
p > z

3 . . s

A.J. Viterbi, "Acquisition and T racking Behavior of Phase-Locked
Loops, ' Proc., Symposium on Active Networks and Feedback Systems,
April 1960, Polytechnic Institute of Brooklyn.
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An approximate analysis of the time required for frequency acquisi-
tion by the loop has been performed by Viterbi. For large initial fre-

quency offset, fo’ the time required for acquisition is

2
£
t ~ o seconds
4\/2; B

for the optimum loop.

For an initial frequency offset of 0.017 Hz, 20 percent of the nominal
spin rate, the acquisition time will be on the order of 16 minutes based on

the loop noise bandwidth, 2B being 0,01 IIz,

LO’

3.3 Loop Parameters

The noise power bandwidth of the filter was chosen at 0,188 Hz,
which provides a satisfactory SNR into the limiter, while causing little
phase shift for input signal frequency variation of 20 percent, The SNR
at the filter output, (S/N)BW, is

S BW
= db
(N)BW 9
where
BW = noise power bandwidth of filter
¢ = normalized noise power spectral density

For BW =0.188 Hz

S = -
(N)Bw 3 db

The limiter suppression factor is calculated at the minimum signal-

to-noise ratio.
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For

-3 db,

1

(%)

1

(07
(o)

1
o

.54
Open loop gain is given by
c'o = eme, Ky KVCO

If the constants have the values

o 0.54

(o]

5 )
m 7 volts/radian

0. 005 Hz /volt

"

Kyco
then Go = 0.027 per second.

The loop filter time constants are

Go

‘1'1 = — = 304 sec
B
o)

Ve

TZ = T = 150 secC

o)
where
2B
_ LO _ =3
B0 = T08 T 9.43X 10 rad/sec

The DC gain of the loop filter determines the range of f{requencies
over which the loop will acquire. As the DC gain is made large the theo-
retical acquisition range is increased, However, at the same time the
initial frequency offset due to errors in the loop circuitry also increases,

A maximum value can be found which produces the largest acquisition

range:
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[\Y]

1
2 | ¢ + YoFF|*
OFF aRm

DCrax 1

where ¢OFF and VOFF are the offsets of the loop multiplier and loop
filter amplifier. For typically encountered offsets, ADCMAX is on the
order of 150. For a normal phase-lock loop this value is easily realiz-
able. However, for the present case, where the bandwidth is very small,
the required resistor value would be in the hundreds of megohms, It is
felt that the maximum value which could be used successfully, assuming
strict humidity control aund clectrcstatic cshielding, is on the order of
30 megohms. For this value, Ty = 4500 sec, and the pull-in range:

Bo B0T3

+1 = 0.0175 Hz

The exact value of T 3 is not critical. Twenty percent variation in

its value would not produce an intolerable effect.

3.4 Phase-Lock Loop Circuitry

The recommended voltage controlled oscillator is an astable multi-
vibrator with a control voltage input, The center frequency is 21.3 Hz.

Center frequency stability of 0.5 percent can be realized.

The recommended phase detector is of the switching variety, i.e.,
it accepts a linear signal at one input and multiplies it by *1 depending

upon the state of a digital signal at the other input.

The loop filter amplifier is a high input impedance operational am-

plifier. Presently available units can be obtained having:

Z in > 1010 ohms

VOFF < 3 millivolts
<

IOFF 1 nanoamps

These limits are adequate for proper circuit performance.
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A circuit diagram of the loop filter is shown in Figure C-2. Be-

cause of the high impedances encountered in the implementation, special

consideration must be given the choice of capacitors to be used. The DC

r ” 0
| 30 MQ ]T‘ “hG
I y T2 =Ry G
| |2, 15 uF b =ry c
' IT =R. C =l T
R2, 1MQ|C1, 150 uF 47 R 2
| 9 ——e =R, IR 10
' _}R4“ 1Ry
| R r
FROM | RMQ Wee
PHASE  B—AA—
DETECTOR L »TOVCO

/"1 .
ELECTROSTATIC
SHIELD L——p—

R4
MQ

Figure C-2, Loop Filter

resistance of the capacitors must be high compared to the 30 megohms

resistor in feedback path. This requirement and size and weight consid-

erations suggests the use of polycarbonate film capacitors. Using poly-
carbonate capacitors the 150 uf capacitor will have a DC resistance equal

to 100 megohms or greater,

Due to the very high impedances involved in the loop filter, special
shielding and humidity control must be incorporated into the design. The
operational ampoifier summing point must be shielded from external
voltages. Power supply voltages, coupled through hundreds of megohms
to the summing point, could cause intolerable leakage currents. Using
an electrostatic shield connected to ground, this effect can be minimized.
The loop filter components should also be enclosed in a hermetically

sealed package to prevent surface conduction by moisture.

3.5 Amplitude Detector Circuitry

The coherent detector is a switching type phase detector similar
to the circuit used in the phase-lock loop. The low pass filter is a single
pole RC filter with cutoff frequency 0.01 Hz.
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4, DIGITAL BAND PASS FILTER

A circuit diagram of the system incorporating the digital filter is
shown in Figure C-3. The switches in the digital filter section sequen-

tially connect one end of each capacitor to ground. As each capacitor,

INPUT

'

o —— e -
BanDPAss | 1 R DIGITAL FILTER 1 Low % by CONICAL SCAN
FILTER W SIGNAL TO ACS
P la fe lo la] Loue
| |
| r SW 1 sw 2 sw 3 swal |
! I
T T ——
: + + + - i {
| SN DU PSPPSR DU FUR —d
FULL LOW
CONICAL SCAN
WAVE PASS |
RECTIFIER FILTER AMPLITUDE TO ACS
cLOCK —] SEQUENCER

Figure C-3. Conical Scan Processor Using Digital Filter

in turn, is grounded, the input signal is sampled and held as a voltage on
the capacitor., Changes in the charge on each capacitor from sample to
sample are limited by the cutoff frequency of the RC combination of the

input resistor, R, and the sampling capacitor.

Any substantial change in phase of the input signal from sample to
sample, that is, a significant frequency difference from the sampling
rate, will not be tracked by the RC low pass section. In this manner
input voltages whose frequenceis are different from the sampling rate

ofe
»n

are attenuated, thereby providing a bandpass filter characteristic.

The sampling filter has the property of providing bandpass filtering
in the neighborhood of the sampling rate, but also has responses at fre-
quencies which are multiples of the sampling rate. Because of this fac-

tor, a wide bandpass filter must be used preceding the digital filter to

E3

L.E. Franks and B.I. W, Sandberg, ""An Alternate Approach to the
Realization of Network Transfer Functions: The N-Path Filter, "
Bell Sys. Tech. J., Sept, 1960, pp 1321-50; J. Thompson, "RC Digital
Filters for Microcircuit Bandpass Amplifiers, " Circuit Design
Engineering, March 1964, pp 45-49.
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suppress input signals at multiples of the desired filter center frequency.

Low pass filtering is also required at the output of the digital filter, to ‘
remove higher frequency components caused by the discontinuities between

sampling intervals. The digital filter waveforms are illustrated in

Figure C-4,

L /\\\ /£
./

WAVE FORM
OF SAMPLED
SIGNAL

/" \ /
OUTPUT AFTER / /

LOW PASS

FILTERING \
T

b — —]
N

T

1
SAMPLING RATE

E‘= SAMPLE TIME INTERVAL

N =4, NUMBER OF SAMPLES PER CYCLE

Figure C-4. Digital Filter Wave Forms

4.1 Digital Filter Relationships

Having made the preceding restrictions on the input and output
spectra, the transfer function of the digital filter from Viterbi, op. cit.

is
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@ E, (8 (sm N’) 1 . 1
E_(S) m A . 2T
] b NRC (S-j 57) + 1 NRC (S+j 4%) + 1
where
T = period of the sample sequence
N = number of samples per sampling period
RC = time constant formed by the input resistor and each

o sampling capacitor

This equation is that of a low pass filter which has been translated in
frequency by an amocunt equal to 1/T, the effective sampling rate, Thus

the bandpass characteristic is realized.

The sampling sequence is a commutation process whereby the
capacitors sample the input signal in rotation. The effective sampling
rate, and thereby the center frequency of the filter, is the rate at which
the sequencer rotates, each capacitor providing one sample per cycle.
The center frequency is 1/T, the rotation rate of the sequencer. For N

‘ sample sections (N sampling capacitors), the stepping rate of the se-
quencer is N/T. The clock rate of the sequencer is then N times the

desired center frequency.

Each capacitor is active during 1/N of each commutator cycle., The
effective time constant is, then, NRC. The bandwidth of the digital filter

is the two-sided bandwidth of the effective low pass filter section:

_ 1
By = #nwe Hz

The center frequency, fc’ in terms of the clock rate, C, pulses per

second, is:

The center frequency of the filter, depending only on the clock rate, will
not be affected by variations in the circuit components. It can be changed

' at will, however, by varying the clock rate.
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The bandwidth of the filter is determined by the number of sampling
sections and the input RC time constant. It remains constant for shifts in

the center frequency.

The application of the digital filter to the conical scan tracking
system is as follows: A sun sensor clock, at a multiple of the spin rate
is provided aboard the spacecraft. This clock, which is also a multiple
of the conical scan signal frequency, can be used as the digital filter clock.
The center frequency of the filter would then change automatically as the
spin rate varies. The conical scan signal would always be at the center

of the filter bandpass.

4,2 Performance Requirement of the Digital Filter

In order to provide an output SNR of +10. 74 db, the noise power
bandwidth, BN’ of the digital filter is 0,01 Hz. Since the filter is a single

pole pair function, the corresponding 3 db bandwidth is:

2
Bf = FBN = 0.00636

4.3 Circuit Mechanization

The switches used to connect each capacitor to ground are easily
implemented as transistors. It is not required that the transistors be
choppers, since low offset voltage is not required in this capacitor-
coupled circuitry. Switching should be fast, however. Proper measures
must be taken to insure that the operating transistor turns off before the
next one turns on to prevent charge leakage between capacitors. This

phenomenon has the effect of widening the bandwidth of the {filter,

The number of switches, N, was chosen as four. The distortion
introduced by the sampling process will appear at multiples of twice the

center frequency. These components will be removed by the output low

pass filter,

For N = 4, the bandwidth is

R
B; = zzrc F=
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For Bf = 0.00636 Hz, RC = 12,5 sec. This time constant can be real-
ized using a 1.25 megohm resistor and a 10 uf polycarbonate capacitor.

For N = 4, four capacitors are required,

The input filter is a wide bandpass filter composed of RC elements,
The bandwidth is 0,166 Hz or twice the center frequency. There will,
then, be little phase shift for variations in the conical scan signal

frequency.

The filter at the digital filter output is a low pass filter with a zero
at twice the digital filter center frequency. It is required to attenuate the

distortion introduced by sampling.

A clock function, a multiple of the spin rate, is to be provided Ly
the attitude control system., This clock, having an accuracy of 0.1 per-

cent is used to drive the digital filter sampling sequencer,

The amplitude of the conical scan signal is detected by a full wave

rectifier and filtered by an RC low pass filter,
5. CHOICE OF CAPACITORS

A major difficulty in the implementation of both the phase-lock loop
and the digital filter lies in the practical realization of the very long time
constants required for filtering at the low frequencies involved, Tantalum
capacitors are ruled out because of their high leakage and temperature
variation characteristics. Tantalum capacitors, selected on a unit basis
and operated at low DC bias voltage, could be used at a reduction in per-
formance. This approach is considered inadequate for proper performance

of the system.

For improved leakage characteristics and stable performance over
the temperature range, polycarbonate film capacitors are the recom-
mended choice. Presently available units exhibit less than 1 percent

change in capacitance with temperature and insul ation resistance in excess

of 100 megohms for the highest capacitance value required. Although
polycarbonate capacitors are considerably larger than tantalum capacitors,

the improved performance justifies their choice.
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6. COMPARISON OF THE TWO METHODS

Approximately half the weight and volume of each scheme consists
of that contributed by the capacitors, Since less capacitance is required
in the mechanization of the digital filter, reduced weight and volume re-
sult. Also, since the circuitry associated with the digital filter is less
complex than that of the phase-lock loop, the digital filter mechanization
requires less power., The hardware requirements for the two schemes

are summarized in Table C-1,

Table C-1. Hardware Requirements

Phase Lock Loop Digital Filter
Weight, 1b 1.8 0.9
Volume, in3 50 25
Power, watts 0.3 0.1
Parts count 140 70

While the phase-lock loop filter performs its function autonomously,
the digital filter requires an external clock at a multiple of the spin rate,
This is to be provided by the attitude control electronics which uses a
sun sensor to detect the spin rate, Under conditions of unfavorable space-
craft orientation, the sun sensor output may be lost, resulting in the dis-
abling of the digital filter,

For a step signal input, the activation time of the digital filter is the
filter risetime. The output will attain 85 percent of its final value in ap-

proximately one minute, if the noise power bandwidth is 0.01 Hz,

The phase-lock loop, on the other hand, must execute an acquisition
procedure. If the conical scan signal frequency differs by 20 percent from

the VCO center frequency, the acquisition time will be approximately

16 minutes.

If the spacecraft spin rate is known, it is feasible, by means of an
auxiliary VCO input, to maintain the VCO center frequency in the prox-
imity of the spacecraft spin rate. In this case, the phase-lock loop would
acquire immediately, without slipping cycles. The transient time during

phase acquisition would then be less than one minute.
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APPENDIX D

“ CONICAL SCAN ANGLE TRACKER

1. INTRODUCTION

The receiver block diagram for the spin-stabilized spacecraft using
a conical scan angle tracking technique is given in Figure D-1. This is a
standard double-conversion superheterodyne receiver employing phase-

lock loop (PLL), and conceptually is equivalent to the Mariner IV receiver.

TO EXCITER
i

RANGING COMMAND
CHANNEL SUBCARRIER

PHASE LOOP
MIXER [—=1 IF AMP1 |—={ MIXER 2 }—= IF AMP 2 |t LIMITER _——‘DETECTOR'_— FILTER
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MULTIPLEXER
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FREQUENCYI
MU LTIPLEXElj veo

CONICALSCAN w—— 4 3
SIGNAL TO ACS

AGC
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TO EXCITER

AGC A AMPLITUDE

LPF ’
FILTER DETECTOR

CONICAL SCAN
SIGNAL TO ACS

Figure D-1. Receiver Block Diagram for Spin-Stabilized
Advanced Planetary Probe

In the case of conventional spacecraft receivers requiring wide dynamic
range, the automatic gain control (AGC) is included to maintain signal

level at the receiver output constant over the wide communication distances.
The AGC loop transfer function minimizing transient and noise errors,

when conical scan signal is absent, has been determined.™ In our case

>'=W.K. Victor and M.H. Brockman, "The Application of Linear Servo
Theory to the Design of AGC Loops," Proc. IRE, February 1960.
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AGC will also be used to derive antenna pointing error signals. These
two considerations, which may be in conflict, will determine AGC

mechanization.

Depending on the bandwidth of the AGC loop, two types of AGC mecha-
nizations are possible. If the AGC loop passes frequencies only below
conical scan frequency fz, it will be referred to as slow AGC. In this
case the amplitude modulation produced by the conical scanning appears
at the input to the limiter. It is believed that this amplitude modulation
will not affect command or ranging performance. For slow AGC the coni-
cal scan signal obtained at the output of amplitude detector, at point A,
Figure D-1. Since the conical scan frequency will be of the order of
1/12 Hz, the AGC loop noise bandwidth would have to be much narrower
than this. In order to obtain such a low loop bandwidth, the AGC filter
may require large size capacitors. The second type of AGC loop has
bandwidth much higher than conical scan frequency and sometimes is
referred to as fast AGC. The amplitude modulation in this case is almost
completely suppressed at the output of the IF amplifier. The error signal
can be obtained at the output of the AGC amplifier, at point B in Figure D-1.

2. ANALYSIS

In this section the conical scan SNR at the input to ACS under numer-
ous simplifying assumptions for slow AGC is derived. When fast AGC is
used, the analysis is involved and will not be attempted at this time. The
open loop SNR is required to determine the closed loop antenna pointing
error or accuracy of the altitude control system due to receiver (thermal)
noise. It is not implied here that the pointing accuracy will be limited by
the receiver noise; it may be that the so-called servo noise or other error

sources will dominate.

To simplify analysis, a one-way voltage antenna pattern will be

%
approximated by the gaussian function.

G(8) = G_ exp (-a%8%)

*M.I. Skolnik, Introduction to Radar Systems, Chapter 5, N.Y.
McGraw-Hill, 1962.
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where 0 is defined in Figure D-2(A) and

Go = G(O = 0) = on axis antenna gain
aZ _1.388
- 2
eb

eb = 3 db antenna beamwidth

z SPIN AXIS

ANTFENINIA
&) BEAM CENTER
(A)

®

3db

CONTOUR
SPIN
AXIS
CENTER OF
BEAM
LOCUS OF ANTENNA
BEAM CENTER
Figure D-2.

Geometry of Antenna Beam

Under the assumption that angles 6, @, and ¢ are small, the signal into the
receiver can be expressed as

[ & 1.
x(t) = ‘ﬁAc C [1 + nzl Kn cos (nwzt - n¢0) sin wlt

where ¢_ is defined in Figure D-2(B) and
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G =1

received carrier amplitude

c
C= {exp [—aa(af2 + eZ) ]} Io(Za.Z ae)
ZIn(Za.2 a e)
o ® I (2a% @ ¢)
o €
wy = carrier frequency
w, = tﬂ = angular conical scan frequency

For coherent AGC, the receiver can be simplified to the one shown in
Figure D-3. Assuming that the amplitude of the AGC amplifier is main-
tained at constant level L, the receiver gain is L/AC. The amplitude

detector output is given by

y(t) = x(t) - VZ-Sin wt

oo
=L-C [1 + ngl Kn cos (nmst - n¢o)

x() + n{t) VT sinw.t
i w‘

———— [FAMPI

y{t)

AGC LPF Et)
FILTER | BW=8 TO ACS

Figure D-3. Equivalent Receiver Block Diagram for Spin-
Stabilized Advanced Planetary Probe

If the bandwidth of the LPF, Bo' is chosen to pass only the fundamental

of the scan frequency, this equation reduces to

2(t) = 2L exp [ -aZ(o.2 + 52)] 11(2a2 ae) cos(wzt - 9)0)
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Note that the constant DCterm is of no interest and has been omitted.

For Zazu ¢ << 1, the above equation can be approximated by

E(t) = C1 € cos(wzt - ¢O)
where
C1 = ZLaza exp (-a2 (12)

Thus, the amplitude of E(t) is proportional to the error angle and can

be used by ACS to point the spacecraft at the earth.

The output noise spectral density, assuming that the input noise
is white gaussian with one-sided spectral density No’ will be NO(L/AC)Z.
The filters were assumed ideal, i.e., they pass all frequencies within the
passbands and attenuate completely all other frequencies. The signal
power-to-noise ratio at the output of the LP filter will be
Z(Aca2 a e)z exp (—Zaz az)

5 _
N ~ N B )
‘ o o

41



APPENDIX E

POWER AMPLIFIER SURVEY

1. INTRODUCTION

In this appendix the results of a brief S-band power amplifier
survey are presented. In this survey, devices with power outputs
from 1 to 100 watts were considered for possible spacecraft launched
between 1970 and 1980. As expected, the more distant future cannot be
predicted with any confidence so that the emphasis was placed on the 1972
launch date. The following devices are considered: tunnel diodes, transit
time devices, transistors, diode multipliers, up-converters, vacuum

tube triodes, klystrons, amplitrons, and traveling wave tubes (TWT). .
2. TUNNEL AND TRANSIT-TIME DEVICES

Tunnel diode circuits for RF power sources are limited to the low
milliwatt range, and it is not foreseeable that much higher levels are
possible. Also likely to remain at low power levels are transit time de-
vices (Gunn, Read, and similar diode types) involving avalanche or domain
transit phenomena. These are sometimes characterized by high spectral
purity, but at powers below 0. 1 watt. Therefore, these various devices

are ruled out for near-term transmitter applications.
3. TRANSISTORS

For generation of power up to 2 Gc, transistor technology is such
that 1 to 2 watts are now or will soon be achievable. Simplicity, high
efficiency, and high reliability are all to be expected from direct genera-
tion in transistor output stages. In addition there is a gain in weight,
efficiency, and reliability associated with the power supply needed because
the DC-DC converter can usually be omitted. Extrapolation of failure rate
data to low or zero dissipation levels indicates that up to an order-of-
magnitude failure rate reduction may be expected during power-off periods,
although both cycling and switching reduce the actually attainable improve-

ments.
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Above the 2 Gc limit, available output power drops radically, due
to device geometry and fabrication problems. Significant improvement

is not expected for several years.
4. DIODE MULTIPLIERS AND UP-CONVERTERS

Multiplier circuits utilizing the voltage-variable ("varacter') diode
are expected to remain the only significant solid-state RF sources for the
near future. Use is made of high powers generated by transistor stages
(at present, 50 watts of power at 100 MHz is considered feasible; this
should increase to 100 watts in 1 to 2 years). By means of cascades of
low loss silicon diode frequency multipliers significant power at 2 Gc is
obtained. At present, this is limited to about 4 watts; short-term tech-
nology advances are expected to push this to 10 watts. Should gallium-
arsenide diode performance attain theoretical limits more closely, it is
conceivable that 100 watts at 2 Gc may be available after several years

of development effort.

Efficiency and reliability are steadily improved as a result of higher
power generated by transistor drivers, thus requiring fewer stages of low
order multiplication to reach the desired output frequency. Conversion
efficiencies of 15 to 30 percent should be readily obtainable in the near-

term period.

Turnoff reliability improvement is also to be expected from diode
multipliers, since the failure rate versus dissipation function is similar

for diodes and transistors.

Up-converters, which simultaneously mix and amplify an inter-
mediate frequency signal to RF by means of nonlinear reactance diode
mixers, are also possible candidates for solid-state generation of RF
power. In such devices, a narrowband, varacter-diode multiplier fur-
nishes a reference or pump source for the mixing circuit. A tradeoff
of multiplier simplicity and efficiency for mixer loss is made. Functional
differences, such as modulation handling, must also be considered, since
up-converters do not increase frequency and phase deviation as do multi-

plier chains.
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Step-recovery diodes are gaining importance for use as solid- state
harmonic generators. The mechanism of rapid reverse charge flow per-
mits simple, high efficiency, low noise, high order multiplier circuits.
Present performance is reported to result in about 20 to 30 percent effi-
ciency in multiplying 100 Mc up to 2 Gc, without need for idler circuits
as in varacter multipliers. Power levels are limited by internal series
resistance and breakdown voltage. Technology advances should soon re-

sult in generation of about 1 watt at 2 Gc in a simple high reliable circuit.
5. VACUUM TUBES

Applications requiring 10 watts or more at 2 Gc at present are con-
strained to the use of vacuum tube sources. Several are available as

follows:

° Triodes

. Voltage tunable magnetrons
° Klystrons

° Amplitrons

° Traveling wave tubes

For use in the Advanced Planetary Probe, where frequency stability
and noise characteristics are important, tubes which are restricted to
applications as power oscillators (the voltage tunable magnetron is an
example) must be eliminated from consideration. Frequency stabiliza-

tion loops are possible, but undesirable for reasons of added complexity.

Triode cavity amplifiers are available up to 20 watts at 2 Gc, with
15 to 30 percent efficiency. Bandwidth is less than 1 per cent, which is
not a limitation for deep space use. Life of those tubes is fairly limited
to about 10, 000 hours, 50, 000 hours being an upper limit for tubes oper-

ating at lowered efficiency.

Klystrons (electrostatically focused) amplifiers are available for
high power narrowband applications. Power levels up to 100 kw are
normal, with efficiencies typically between 30 and 40 percent for the

high power units, and 5 to 30 percent for the lower power tubes. Weight
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and size for 20 watt units are low; for example 2 pounds and 3-1/4 inches
diameter. Gain is in the 15 to 30 db range; bandwidth is 0.1 to 0. 3 per-
cent, which is more than sufficient for this application. Expected life
for klystrons should be as high as 50,000 hours since the gun design is
the only significant limiting factor. Noise output is generally sufficiently

low for most systems.

""Amplitrons'" (crossed-field, backward-wave amplifiers) have been
developed for outputs of about 25 watts with 50 percent efficiency. Weight
for these tubes are low; one unit (Raytheon QKS 1300) weighs 24 ounces.
Requircment for a complex high voltage power supply mated to the indi-
vidual tube's characteristics is a problem for these devices, resuliing in
increased total weight. Powers to 100 watts are available; efficiency may
be as high as 60 percent. Long life is being demonstrated for the lower
power units, although 10, 000 hours is a probable maximum figure to be
expected. Bandwidths are typically as high as 10 percent. Some char-
acteristics present application problems: low backward insertion noise,
noise, low gain, sensitivity to loading and to power supply voltages, and
others. One advantage of amplitrons is that redundant amplifiers can be
provided without RF switching. With amplitrons, series connection is
used, and the deactivated unit presents about 0.5 db insertion loss.

Further development is needed if these devices are to become competitive.

Traveling wave tube amplifier flight experience is extensive:
Telstar, Relay, Syncom, Surveyor, and Pioneer 6 are some examples.
Space application units are limited at present to 50 watts at 40 percent
tube efficiency; higher powers are for normal ground use and could be
qualified for space in the next few years. Of course, in space applica-
tions the constraints of variable RF drive, environmental excursions,
aging, and long term power regulation are expected to yield worst case
tube efficiency of the order of 35 percent. Life is predicted to reach as
high as 90,000 hours for some units in development. Large improvement
in efficiency is conceivable possible with new techniques. Wide band-

width (about 50 percent) is commonplace, eliminating temperature effects

. on center frequency common with cavity-loaded triodes and klystrons.

A disadvantage in this application is the need for a power supply with

several stable and high voltages.
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APPENDIX F

MODULATION AND BIT SYNCHRONIZATION

1. INTRODUCTION AND SUMMARY

For the Advanced Planetary Probe missions launched in the early
1970's, it was assumed that Mariner IV type modulation and bit synchro-
nization will be used. This is a conservative approach since the
Mariner IV system has flight-proven capability and the possible per-
formance improvement may require some development effort. For the
more advanced missions, even small communication efficiency improve-
ments should be considered. It is possible that more reliable spacecraft
can be achieved for the same capability and weight by turning to coding,
rather than higher power transmitters. Redundancy and automatic fault
detection and correction can be more easily incorporated in encoders

than in power amplifiers.

In Section 2 of this appendix, the bit synchronization problem is
considered. It is recognized that the PN sync techniques, in general,
are superior and only one other method is briefly mentioned. The
Mariner IV telemetry and command links used two-channel PN bit sync
systems. Since more efficient single-channel techniques have been
developed, the two multiplexing methods had to be compared in order to
determine which is most appropriate for the Advanced Planetary Probe.
For the telemetry link, because of simpler modulator design and
improved efficiency, the single-channel systems should be used for
advanced missions. The choice for the command link is not so simple.
Since the single-channel detector is more complex, weight, reliability,
and performance of the two systems has to be compared before a best

approach can be chosen.

In Section 3 suppressed carrier modulation methods are investi-
gated. These techniques offer improvement in efficiency since no power
is transmitted in the carrier. Unfortunately, the price of improved
data efficiency is the inferior phase-locked loop (PLL) performance and

more complex receiver mechanization.
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Application of coding for the Advanced Planetary Probe is briefly
reviewed in the last section. For the telemetry link, a 128-word biorthog-
onal code dictionary was selected with potential performance improvement
of 2.4 db over the uncoded case. It is recognized that an important con-
straint on the selection of the spacecraft telecommunication system is the
DSIF configuration. As the number of missions supported by DSIF increases,
it becomes important to use a minimum amount of mission-dependent equip-
ment. The more complex ground decoder for the biorthogonal coding is

the main disadvantage of this technique.

The need for coding the command link is questionable. However, if
very low command rejection probabilities are needed, single error-

correcting codes could be used.

2. TWO-CHANNEL AND SINGLE-CHANNEL SYNCHRONIZATION

Two basic multiplexing formats have been devised by JPL for tele-
communication systems employing PN bit synchronization techniques.
In the two-channel scheme, the data and sync channels are linearly summed
to form a frequency division multiplexed signal. In the single-channel sys-
tems, the binary data and the sync are summed modulo 2 to produce a
binary composite waveform.* The TRW Voyager report compares
Pioneer 6 I-Q loop telemetry synchronization methods with the PN sys-
tems and shows that the two systems do not differ greatly in performance.
One of the advantages of the Pioneer method is that the data encoder is
simpler since the hardware associated with the PN code generation is
eliminated. Another advantage is that self-synchronous coherent carrier
systems, resulting in better efficiency as discussed in Section 3, possibly
could be developed when PN systems are not used. However, the bit
synchronization provided by the I-Q loops may not be as accurate and,

therefore, these techniques are not further considered.

The modulators for both two-channel and single-channel systems

are fundamentally similar, each requiring a clock, PN generator, data

*J. C. Springett, "Telemetry and Command Techniques for Planetary
Spacecraft,” JPL Technical Report 32-495, January 15, 1965; TRW
Systems, "Phase 1A Voyager Spacecraft,” vol. 5, 30 July 1965.
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synchronizer, and logical devices. The two-channel modulator is con-
ceptually and practically somewhat more complicated because it requires,
in addition, a divider and an analog summing circuit. The single-channel
detector, however, is more complex than the two-channel since it requires

two additional bandpass filters and two multipliers.

An important advantage of the single-channel system is the use of
frequency f_ as the data subcarrier reference rather than 4f_ as in the
two-channel system. Since both PLL operate at fs, the phase jitter on
4f is four times larger than on the f_ reference. Offsetting this advan-
tage is the degradation caused by multiplying two noisy signals in the

third multiplier of the single-channel detector.

Clearly, the single-channel system is capable of greater communi-
cation efficiency because no power is needed for synchronization. At
high bit rates (perhaps above 100 bps), however, the percentage of power
used for synchronization is not significant so that both systems have
about the same efficiency. At lower bit rates (10 bps) the single-channel

system is significantly more efficient than the two-channel format.

2.1 PN Synchronization Systems for Telemetry Link

For the Advanced Planetary Probe it is anticipated that the lowest
bit rate will be about 10 bps. In Table F-1, the telemetry performance
for this bit rate and the assumed other parameters is demonstrated.

The comparison is made for three carrier PLL noise bandwidths: 12, 5,
and 1 Hz. The 12 Hz noise bandwidth is presently available, while

the realization of the other two bandwidths depends on the availability

of phase-‘stable oscillators. The total required receiver input power
divided by the noise density, ST/Q, is taken as the comparison criterion.
It is seen that for the 10 bps the performance improvement of the single-
channel over the two-channel system varies from 1.3 to 2.2 db depending

on carrier PLL noise bandwidth, 2 B Since the improvement is

maximum at the lowest bit rate, the SL,IC.)/@, for 100 bps has also been
included in Table F-1. As expected, at this bit rate the improvement

is only a fraction of a decibel. The theoretical coherent PCM/PSK is
included for reference purposes. It assumes that perfect carrier refer-
ence and bit sync are available at the receiver. Since the as sumed

single-channel system does not require power for bit or subcarrier sync,
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Table F-1, Comparison of Single-Channel and
Two-Channel PN Synchronization

Pb=5x1o'
e

Systems

3

=2 BLO(SynC) = 0.5 Hz

10 bits/sec 100 bits/sec
System Carrier “C E_S_ _S_Q i’l_‘ S_D _S__’E
Type 2B, 4 ) ) ) ) ) )
in Hz . db . db | . db . db|. db . db
P YE|MH W Hz Hz
Theoretical
PCM/PSK
SPT
= = 5.2 db -- 0 0 15.2 15.2 25.2 25.2
(suppressed
carrier)
Two-channel 12 16.8 15.4 17 21.2 27 27.8
PCM/PSK/PM
SDT
— = 7 db 5 13 15.4 17 20.2 27 27.6
Squarewave 1 6 15.4 17 19.5 | 27 27.4
subcarrier
Single-channel 12 16.8 0 17 19.9 1 27 27.4
PCM/PSK/PM
SDT
—35 =7db 5 13 0 17 18.5 27 27.2
Squarewave 1 6 0 17 17.3 | 27 27
subcarrier

only carrier power transmitted in order to obtain coherent reference
reduces efficiency of the single-channel PCM/PSK/PM.

reason self-synchronous carrier systems are briefly discussed in

Section 3.
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Table F-1 also indicates the potential performance improvement
due to narrower PLL noise bandwidths. All of the indicated improve-
ment, however, cannot be achieved because certain amounts of power
are wasted in intermodulation products. A comparison criterion which
takes this into account is the data modulation loss computed from opti-

mum modulation indices.

2.2 PN Synchronization Systems for Command Link

It appears that 1 bps is adequate for the command link. Some
interest in higher bit rates is indicated since the time required to acquire
bit sync is reduced for higher bit rates. Another way to reduce bit sync
acquisition time is to incorporate automatic acquisition loop. The acqui-
sition time, however, is of major interest only during near-earth opera-
tions. At longer communication distances, the propagation delay will
predominate. Lower data rates might be considered, but because of the
carrier power requirements and the difficulties in mechanization at the
lower rates, the total power required does not decrease sufficiently to
make such a choice advantageous. Even at 1 bps, rate construction of the
subcarrier reference is difficult and results in significant performance
degradation. Using any other subcarrier synchronization method, such
as a squarer or an I-Q loop, will cause difficulties similar to PN synchro-
nization techniques. For these reasons, only 1 bps transmission rate for

command link is considered.

In Table F-2 the cormmand link performance for the assumed
parameters is illustrated. Since automatic sync acquisition is not recom-
mended, the sync PLL noise bandwidth was taken to be a conservative
2 Hz. Table F-2 indicates that the performance improvement of the
single-channel over the two-channel is 1.4 and 2.2 db for the 20 and 10 Hz
carrier PLL noise bandwidth considered. Larger improvements cannot
be obtained since most of the transmitted power is in the carrier com-
ponent. Partly for the same reason, the command link efficiency is much
lower than the theoretical PCM/PSK.

The data subcarrier in the two-channel system was assumed to be
sinusoidal. At low modulation indices used for the command channel, the
sinewave subcarrier provides somewhat better performance than the

squarewave since it allows bandpass filtering. The single-channel system

50




Table F-2, Comparison of Command Link
Modulation Techniques

P b =1x 10-5
e
Sync 2 BLO = 2 Hz
Carrier SC S_D S_S_ S_T
System Type 2 BLO K3 ) @ )
. db in 9_1?_ in é}i in g’-b—
in Hz il = 73 Hz Hz Hz
Theoretical _ - - 6
PCM/PSK - >
Two-channel
3.4
PCM/PSK/PM 20 21 t> 18 :
s1nu301d§1 10 18 15 18 22.0
subcarrier
Single-channel
PCM/PSK/PM 20 21 t> ° 22
squarewave 10 18 15 0 19.8
subcarrier

apparently requires a squarewave subcarrier. If a bandpass filter is
needed in the data channel, the performance improvement shown in

Table F-2 would be reduced.

3. SUPPRESSED CARRIER TECHNIQUES

It is well known that the most efficient modulation technique is the
coherent PCM/PSK. To realize this efficiency, however, a coherent
carrier reference has to be provided at the receiver. The most common
way to establish a coherent phase reference is to transmit a residual
carrier component, referred to as pilot tone, which is tracked by the PLL
receiver. Since PCM/PSK modulation completely suppresses the carrier,
a subcarrier is required. The resultant modulation technique can be
described as PCM/PSK/PM, i.e., the PCM data biphase modulates the
subcarrier, which in turn phase-modulates the carrier with modulation
index less than w/2 radians. This is the scheme used for Marinef v

links, and was tacitly assumed in Section 2.
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Subcarriers are needed for other purposes. For low bit rates and
PCM format used, a subcarrier is required in order not to degrade data
and PLL performance by the data spectrum which falls inside the loop
noise bandwidth. The single-channel PN synchronization systems also
require squarewave subcarrier to facilitate modulo-2 addition of data and
synchronization components. Since the single-channel PN synchronization
systems apparently do not require any power for bit synchronization and
the coherent subcarrier reference is obtained as a byproduct, the addition
of subcarrier should not degrade communications efficiency. Thus, the
main disadvantage of the pilot tone method is that it requires power which
could be used for transmitting information. For high bit rates, the data
modulation loss (degradation due to the pilot tone transmission) is small,

as illustrated in Table F-3. At low bit rates used for the command link,

Table F-3. Modulation Losses for Single-Channel
Telemetry Links

PCM/PSK/PM; Squarewave Subcarrier

SDT

D _7dbforP P=5x10"">
¢ e
SNR in 2 BLO = 6 db
Carrier 10 bits/sec 100 bits/sec
2 BLO Carrier Data Carrier Data

Modulation Modulation Modulation Modulation
JLooss in db Loss in db Loss in db Loss in db

12 -3 -3 -10 -0.45
5 -5.5 -1.4 -10 -0.45
1 -10 -0.45 -10 -0.45

however, the modulation loss is of the order of 7 db, as shown in
Table F-4. Therefore, suppressed carrier modulation methods which

do not require pilot tones to obtain coherent references are of interest.
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Table F-4. Modulation Losses for Single Channel
Command Link at 1 Bit/Sec

PCM/PSK/PM; Squarewave Subcarrier

ST
£ o isdbforP P=1x10>
(63} e
SNR in 2 BLO =8 db
Carrier 2 B in Hz Carrier Modulation Data Modulation
LO Loss in db Loss in db
20 -1 -7
10 -1.8 -4.,7

Two techniques are available to reconstruct a coherent carrier
reference by operating on the suppressed carrier signal. The first tech-
nique can be described as squarer, followed by a conventional PLIL. The
second technique is known as the I-Q loop.* Both of these methods are
widely used for bit synchronization and coherent subcarrier reconstruction.
About the same number of components is required to mechanize each sys-
tem, and, under some simplifying assumptions, the two schemes are
mathematically equivalent.* Therefore in what follows only the squaring

loop is considered.

One disadvantage of the I-Q and squaring loops, especially in the
case of command link, is that the receiver mechanizations for both of
them are somewhat more complex than a simple PLL. Another problem
with the self-synchronous technique is the 180 degrees phase ambiguity
since both +sin(o.>ct + ¢) and —sin(wct + ¢) yield the same signal when
squared. Although several techniques are available to resolve this

ambiguity, it results in more complex equipment.

The performance of the simple PLL and the squaring loop will be

considered by comparing loop phase errors and carrier reference phase

*H. L. Van Trees, ”Optifnum Power Division in Coherent Communication
System," IEEE Trans., SET 10 (March 1964).

53



errors. The mean square phase error in the loop due to the presence of

noise is approximately given by

2 1
a =

p - ZSNR

where SNR is the signal-to-noise ratio in the loop noise bandwidth. For
PLL, the SNR is

St M1 c
$2B. -

(SNR)1 =
LO

and for the squaring loop it is found that

STZ p4
(SNR)2 = ) >
20(2B' | ) (stp ¥ <I>BO)
where
p2 = ratio of filtered signal power to
unfiltered power at the input of BPF

By = bandwidth of BPF preceding the squarer
ST = total received signal power

<

LC carrier modulation loss

2 BLO PL.1L noise bandwidth

2 B’LO squaring loop noise bandwidth

® = noise spectral density

The 0 db SNR is normally referred to as absolute phase-lock threshold.
At this point, the acquisition is difficult and the loop noise error, o_, is
. 2
1 radian rms (O'P = 1/SNR for low SNR). The carrier reference phase
. 2
error, o ,, is equal to 0'p for PLL, while for the squaring loop, 0'512 =

1
2 2 2
1/4 UpZ.' Thus, for O—pl = 0‘p2 or (SNR)l = (SNR)Z, the data performance

*7.3. Stiffler, "The Squaring Loop Technique for Binary PSK
Synchronization, " JPL SPS 37-26, Vol. IV, 31 March 1964.
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of the squaring loop system will exceed the data performance of the simple
PLL system by at least the data modulation losses given in Tables F-3
and F-4. In general, however, the variance of the phase error for the
squaring loop cannot be made equal to (or smaller) than the variance of

the simple PLL. This will be illustrated by the following example.

. 2 _ ) 5. .
Assuming that p = 1 and (2B LO) =2 (ZBLO) and equating (SNR)1
and (SNR)Z, we can determine maximum BO for which the squaring loop
is superior to PLL. This maximum BO’ as a function of ZBLO’ is given

by

(SNR)1
B.=28B

1
O LO M (“ B 2\

LC

From Table F-4, where carrier modulation losses, MLC’ are given for
command link, it immediately becomes apparent that the squaring loop
cannot be made superior to PLL. For the telemetry link, the required
maximum B_ for the previously considered bit rates and carrier PLL

)
noise bandwidths are given in Table F-5 for (SNR)1 = 6 db. Unfortunately,

Table F-5, Maximum BPF Bandwidth

Bit Rate Carrier 2 BLO in Hz Maximum BO in Hz
12 0
10 5 105
320
12 3800
100 5 1600
320

the performance indicated by the BPF listed in Table F-5 cannot be rea-
lized for PN synchronization systems. This becomes apparent when the
power spectrum of the synchronization signal is examined. In general,

the baseband of this signal is much larger than the bit rate so that p2 <1

and T2 > 1" In other words, the PLL will have shorter acquisition
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times and longer time between loss of lock than the squaring loops. Thus,

from the loop performance standpoint, suppressed carrier techniques do

not appear to be attractive.

It is interesting to point out that for the Pioneer 6 bit synchroni-
zation method, the signal baseband is approximately equal to twice the
bit rate. In this case, p2 = { and the performance improvement can be

realized with the suppressed carrier schemes.
4, CODING

The present state-of-the-art method for telemetry systems, with
few exceptions, is to use the binary uncoded PCM. By this, we mean
that the data word length is equal to the number of information bits in the
word. In other words, no redundant bits are added to the data words.
Furthermore, the detection on the ground is on the bit-by-bit basis as
used by Mariner IV and most other spacecraft. It has been well estab-
lished that the communications efficiency can be improved by adding
redundancy at the transmitter. If error detection and/or correction is
used to decode the received words on a bit-by-bit basis, the coding is
known as error correcting coding. Many spacecraft command links use
some sort of error detection schemes. If the redundancy is employed to
reduce errors by decoding the entire word in one operation, the coding
is known as simplex, orthogonal, or biorthogonal coding.* Although
simplex codes are optimum, the difference in performance between

and orthogonal or biorthogonal codes is small.

The modulation, as discussed in the preceding section, is taken to
be coherent PSK and the disturbance, additive white gaussian noise. In
case of error-correcting coding, it is assumed that the two binary
symbols are transmitted with equal energy and probability; and in case
of orthogonal (or simplex or biorthogonal) coding, all words are equally
likely. Under these circumstances, it is known that for both coding tech-
niques the maximum likelihood of correlation detection is achieved in the
sense that it minimizes word error probability. It has been established

that communications efficiency with simplex coding cannot be exceeded.

“S.W. Golomb, ed., Digital Communication with Space Applications,
Prentice-Hall, 1964.
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This does not rule out the existence of error-correcting codes which have
efficiency equal to the simplex codes. The known error-correcting codes,
however, are less efficient than orthogonal codes. For word error prob-
ability of the order of 10-2, the performance of certain error-correcting
codes is only about 1 db worse than simplex codes.* In this application

it is expected that a PZ in the neighborhood of 3.5 x 10_2 will be adequate,
so that the difference in communication efficiency between the two methods
will be of the order of 1 db. On the other hand, for signal-to-noise ratios
approaching zero (and therefore P:’—--l), it has been found** that ortho-
gonal codes offer 3.4 db improvement over the error-correcting codes

as the length of the code increases without bound. One other disadvantage
of the error-correcting codes is that bit error probability in the region of
interest (5 x 10-3) may be larger than for the uncoded case. Since both
digital and analog data may be transmitted, the bit error probability will
be used as performance criterion. An advantage of the error-correcting
coding is the fact that decoders may be simpler. In fact, for large diction-

aries, the decoder for orthogonal codes becomes prohibitively complex.

4.1 Coding for Telemetry Link

For the telemetry channel, a biorthogonal coding is assumed since
it is more efficient and the complexity is in the ground equipment.
The dictionary size has been chosen as 128 words and corresponds to the
Mariner IV dictionary. For this size the word length is 64 digits. An
elegant and simple way of generating biorthogonal codes, devised by JPL,
is shown in Figure F-1. The digit and word synchronization requires care-
ful consideration. One way to obtain both digit and word sync is to use a
word-synchronous PN system. Although it appears that the PN code length
and the clock frequencies can be chosen to fulfill various constraints, the
design of a PN sync system is outside the scope of this task. Another

possibility for the word sync is to use the comma-free codes which can

*C.M. Hackett, "Word Error Rate for Group Codes Detected by Correla-
tion and other Means," IEEE Trans. Infer. Theory, January 1963.

el
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E.C. Posner, "Properties of Error-Correcting Codes at Low Signal-
to-Noise Ratios," JPL Tech. Rep. 32-602, 15 June 1964.
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be generated with very little additional hardware. Before the word sync
can be acquired, however, digit sync has to be established. For this

reason, the value of the comma-free codes is questionable.

Specifying a bit error probability of 5 x 10_3, it is found (Golomb,
op. cit.,Chapter 7) that coding provides 2.4-db improvement. The
improvement for lower bit error probabilities is even greater; however,

it appears that a bit error rate of 5 x 10_3 is adequate.

The main disadvantage of the biorthogonal coding is the decoder
complexity. At the receiver, the 64 words will have to be stored or
generated and correlated with the received signals. The 64 correlators
can be replaced by an analog~-to-digital converter and a computer. Another
possible difficulty is the accuracy of the digit and word sync required to
realize the theoretical improvement. It appears that the performance
degradation for the coded systems, due to sync imperfections will be

larger than for the uncoded systems.

4.2 Coding for Command Link

The majority of spacecraft command links at present employ some
sort of error- or parity-check coding to decrease the probability of incorrect
command acceptance. Since it is recognized that command capability
over the omnidirectional antenna can improve mission success probability,
further improvement in uplink efficiency is of interest. Furthermore, if

the probability of rejecting a command due to bit errors has to be very

“c.c. Wang, "Phase-Coherent and Comma-Free Biorthogonal Telemetry
System," IEEE Military Electronics Conference, 1965.
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low, say 10_4, coding may be required, assuming that bit error probabili-
ties lower than 10-5 could not be achieved dur to impulse noise or other
differences from the ideal conditions. Bit error rates of 10-5 are nor-
mally claimed by TRW and JPL, and no reliability measurements are

available for bit error probability lower than 10_5

Since encoder complexity is the dominating feature for the command
channel, error-correcting codes appear to be more appropriate than-
orthogonal coding. Unfortunately, the decoder even for single-error
correction can be considerably more complex than a decoder employing

only parity checks.
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APPENDIX G
COMMUNICATION SYSTEM NOISE TEMPERATURE

1. INTRODUCTION AND SUMMARY

One of the parameters that determines telecommunications system
performance is the system noise temperature or the noise spectral den-
sity. In turn, the noise spectral density depends on the antenna temper-
ature, Our main task here is to compute antenna temperature when the

ground or spacecraft antenna is pointed at the sun or Jupiter.

Computed trajectories indicate that the sun-probe-earth angles at
certain instances will be approximately zero. This means that the space-
craft antenna during these periods will be pointed at the sun. When the
spacecraft is in the vicinity of the target, the DSIF antenna may be pointed
directly at Jupiter for a short period of time. Again, when the probe gets
behind Jupiter, the planet may be in the spacecraft antenna beam. Since
the sun and Jupiter radiate a considerable amount of noise around
2300 MHz, this noise will increase antenna noise temperature and degrade
system performance. The amount of radiation from Saturn and Neptune
is much smaller than from Jupiter and will not degrade system perform-

ance.

The spacecraft antenna noise temperature will be affected most
seriously by the sun. Figure G-1 shows that in case of the disturbed sun
and a 16-foot antenna, the noise density may increase by as much as
12 db/Hz above the nominal -164.4 dbm/Hz level.* The quiet sun, how-
ever, will contribute only about 0.3 db/Hz to the system noise spectral
density. Fortunately, it is estimated that the uplink performance will
be degraded quite infrequently by the disturbed sun. When the probe is
near Jupiter and the spacecraft antenna is pointed at the planet, the noise
spectral density will increase by a maximum 1.8 db above the nominal
-164.4 dbm/Hz level.

T
This is based on a receiver noise figure of 10 db. In Section 8.4 of
Volume 2 a receiver with a noise figure of 5.5 db was selected.
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Figure-G-1. Receiver Noise Spectral Density Versus Antenna
Beamwidth with Antenna Pointed Directly at the
Sun

The noise spectral density of the ground system with a 210-foot
antenna will increase by 1.7 db/Hz due to Jupiter noise. The noise
\ temperature of the 85-foot antenna, because of its wider beamwidth, will
| ‘ not be affected by the radiation from Jupiter. In Table G-1 the noise

spectral densities for various cases is summarized.

2. ANTENNA NOISE TEMPERATURE

The system noise temperature can be approximated by

Ta TO (L-1)
T = T + T + To (NF-1)
where

Ta = antenna noise temperature
T - ; - o

o = ambient temperature = 290 K.
NF = receiver noise figure

L = receiver line loss to low noise amplifier

The parameter that remains to be computed is the antenna noise

temperature. Since contribution of the other sources to the antenna
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temperature is known, only the contribution by the sun or Jupiter has to
%
be calculated. The antenna temperature is given by

T =

1
a e G(61¢) Ts (91¢) dQs

where

Ts(el $) = source brightness temperature

G(61¢) = antenna gain

$2 = solid anglc cubtended by the source at
the point of observation

Assuming that the source is directly on the antenna beam axis, for
the case when antenna beam solid angle, ﬂb’ is much smaller than Qs’

T_. can be approximated by

a
T = TS -5
b
where
?s = average source temperature
Gs = plane angle subtended by the source
Gb = plane angle 3 db antenna beamwidth

In the other extreme, when the source is much larger than the

antenna beamwidth,

T =T
a S

The average source temperature can be computed from the

measured flux densities using the expression

ot

b3

J. L. Pawsey and R. N. Bracewell, Radio Astronomy, Oxford Univ.
Press, 1955.
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8 ~ T2k
s
where
= flux density

S
§2_ = solid angle subtended by the source at the antenna

N = wavelength

k = 1.38x 10'23

For small angles, Qs can be accurately approximated by

3. DSIF ANTENNAS POINTED AT JUPITER

For ground-based antennas we obtain the following expression for
the antenna temperature by substituting the exptession for "I'_S and Qs

in that for T :
a

The flux from Jupiter as measured on earth at 0.13 meter wave-

-26 w/mZ/Hz. The 210-foot antenna beamwidth,

length* is about 6 x 10
9., is approximately 0.1 degree. Substituting these values in the above
equation, the antenna temperature due to the planet is found to be 15 de-
grees. This results in a total system temperature of 45°K, or a noise
spectral density of -182.1 dbm/Hz. Table G-1 indicates that the degra-
dation due to Jupiter is 1.7 db. Since the planet will be in view of the
antenna for a short period of time only, the RF noise radiated by Jupiter
should not be a serious problem. Of course, the occultation experiment

may be significantly degraded.

i
*A. G. Smith and T. R. Carr, Radio Exploration of the Planetary

System, Van Nostrand, 1964,
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. 4. SPACECRAFT ANTENNA POINTED AT THE SUN

The flux density measured on earth  for the quiet sun is given as

1 x 10729 and for the disturbed sun as 2 x 10718, Substituting these in

the expression for Ts, the quiet sun temperature is found to be 1.1 x 105 °k

and the disturbed sun temperature is 2.2 x 10'7 °K.

To compute antenna noise temperature, the angle subtended by the
source, es’ or equivalent spacecraft range, has to be chosen, From
trajectories presented in the Mid-Term Report, it is found that sun-
probe-earth angle for Jupiter missions is close to zero at 1 and 5 AU.
Since we are more concerned with the uplink performance at 5 AU than at
1 AU, antenna temperature at 5 AU will be calculated. At this range, the
antenna temperature due to the disturbed sun for the 16-foot spacecraft
antenna is 4.3 x 104 °K. This results in a 12-db degradation of the noise
spectral density, as indicated in Table G-1, The degradation for other
antennas, expressed as a function of antenna beamwidth, is given in
Figure G~1. As shown, the noise spectral density will not be appreciably

. affected by the quiet sun.

Fortunately, the average duration of the strong outbursts of radia-
tion (disturbances) due to flares is only a few minutes. This does not
mean that the sun is quiet the remainder of the time. In general, the
observed level of radiation lies somewhat higher than the value used here
for the quiet sun. This nominal level, however, is much lower than
2 x 10-18; so that the antenna temperature will not be significantly
raised., Furthermore, from the trajectories it is estimated that for the
Jupiter missions the antenna will be pointed at the sun for less than 25
days. Thus, the maximum percentage of the time during which uplink
performance can be degraded by the sun is small, For this reason it
may be concluded that while the solar radiation may infrequently degrade
uplink communications performance, it does not appear to be a serious

problem in this application.

‘ *A. G. Smith, "Extraterrestrial Noise as a Factor in Space Communica-
tions," Proc. IRE, April 1960.
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5. SPACECRAFT ANTENNA POINTED AT JUPITER

When the probe is behind Jupiter, the planet may be in the space-
craft antenna beam. Since the spacecraft will be located close to Jupiter,
the angular size of the radiation source will be large with respect to the
antenna beamwidth. Linear interpolation indicates that the Jupiter and
antenna temperature is 1350°K at 2100 MHz. Thus, the noise spectral
density will be degraded by 1.8 db, as shown in Table G-1.
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APPENDIX H

MIDCOURSE PROPULSION SYSTEM
ERROR ANALYSIS

1. INTRODUCTION

The error analysis is based on the assumption that calibration
curves will be generated during tests of the midcourse propulsion system
under simulated spacecraft environment. These curves will be used to
predict system performance based on telemetry inputs from the space-
craft. The telemetry inputs will be propellant tank expulsion gas
pressure and propellant temperaiure. These will be nsed to determine
which calibration curve the system will follow during the subsequent

firing.

The errors to be considered are those incurred in measurement
and transmittal of the measurements from the spacecraft and those

inherent in formulating the calibration curves.

The errors incurred in measurement and transmittal of spacecraft
data are those resulting from original calibration errors in the trans-
ducers, accuracy capability of the calibrated transducer, and the errors
associated with telemetering equipment. It is assumed that the capability
of the telemetry equipment will be at least equal to the accuracy capa-
bility of the calibrated transducers. This will be done by providing a

sufficient number of bits per measurement.

The errors associated with the generation of the calibration curves
do not include any errors associated with the expulsion gas loading of the
propellant tank based on the assumption that great care will be exercised
in tank and bladder fabrication and assembly to obtain reproducible
tankage. Great care will also be taken to provide a precise amount of
propellant in the tank in order to have an accurate initial gas volume.
The errors associated with the propulsion system will be those involved
in measuring the tank pressure, thrust, and the effect of simulation of
the propulsion system space environment. The major environmenrntal
effect will be that associated with reproducing the heat transfer to the

gas during blowdown. Transfer rates associated with 1 g earth
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environment will be different from those experienced under less than
{ g aboard the spacecraft. Also, the inaccuracies associated with simu-
lating the contribution of heat from the surrounding equipment will

introduce additional errors.

The errors associated with changes in viscosity of the propellant
during the blowdown mode which affect line resistance and flow rates
result in thrust changes. This error with the very low flow rates and

relatively large line sizes is a second-order effect.
2. MEASUREMENT ERRORS

Tank pressure measurements will be telemetered to earth. They
will be used to determine which calibration curve the engine will follow
during the subsequent firing. The thrust error associated with this

measurement varies with burn time and is shown in Figure H-1. The
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Figure H~1. Spacecraft Thrust Error Due to Tank Pressure
Measurement Uncertainty Telemetered toEarth

error in tank pressure as a function of the ability to measure tank

pressure, P /PTms’ is

Tas

Transducer error, percent

Calibration 0.25
Measurement 0.50
Telemetry error, percent 0.50

1.25 percent (30)
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The transducer and telemetry errors are 99. 99 percent values of
an assumed rectangular distribution. Straight addition results in a con-

servative 3¢ value.

The tank pressure error is

apTas
dPrs =3P~ — * Prs
Tms

where PTs is the tank pressure being measured aboard the spa.cecraft.
The thrust error with respect to uncertainties in measurement of tank

pressure aboard the spacecraft is

where 8F/8PT is the change in thrust as a function of tank pressure.

3. CALIBRATION ERRORS

The uncertainties associated with generation of the calibration
curves are divided into two groups, proportional and nonproportional
errors. The nonproportional uncertainties are divided into those
associated with thrust initiation and those occurring during thrust

termination.

3.1 Proportional Errors

The test stand transducers can be more accurate than the flight
transducers aboard the spacecraft. They do not experience as severe
an environment and no weight limitation is involved. Based on this,

the measurement error, 9P, /P , is:
Ta'" Tm

Transducers calibration error 0.01 percent
Transducers measurement error 0.25
Recorder (includes biased and 0.25
random errors)
oP
Ta
B - 0.51 percent (30)
Tm

The 0. 01 percent calibration accuracy is based on TRW's extremely

accurate deadweight calibration system. The recorder accuracy of

69



0.25 percent is based on TRW's 1000-count digital system with a sampling
rate of 625 samples per second. Hysteresis is removed by calibrating in
the descending pressure mode, which simulates blowdown system opera-
tion. The tank pressure error,

oP

Ta
dpP = =
T 81:)Tm

where PT is the test stand tank pressure. The thrust error with respect

to uncertainties of measuring test stand tank pressure is

_0F
dFP -ﬁ—TXdPT

A plot of de is given in Figure H-2. The errors involved in measuring

the thrust, 8F /OF_, are:
a m

Calibration error 0.25 percent
Measurement error 0. 25
Recorder error 0.25
aFa
= 0.75 percent (3¢
5T P (30)
m
0.08
(-4
S \
(-4
&
= 0.06 ~
o \
oL
I
—
S o0.04 ~
<
:7’ \_\
A
w
= 0.02
Y
5
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Figure H-2. Test Stand Thrust Error Due to Tank
Pressure Measurement Uncertainty
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The thrust error due to measurement errors

oF

where F is the thrust level. Figure H-3 is a plot of dFm as a function

of firing time at 70°F.
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Figure H-3., Test Stand Measurement Error (3¢) Versus
Midcourse Propulsion System Burn Time

The next error is that associated with simulating the system
environment accurately. For instance, errors will be associated with
trying to duplicate spacecraft heat transfer rates to the expulsion gas
during the propulsion system blowdown expansion process. Analysis
will be performed to determine the effect of the much lower g level on
convective heat transfer in an effort to remove as much uncertainty as
possible; however, even with the analysis an error will exist. Here it
is assumed that the inaccuracy in simulating the heat transfer rates will
result in a 5°F error, i.e., the gas temperature during blowdown at the

test stand while generating the calibration curves will be 5 degrees
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different from that actually experienced aboard the spacecraft. There-

. o
fore dT will be 5"F. Changes in expulsion gas temperature are less
critical during the later part of the burn since less expansion takes place

with the expulsion of the same increment of propellant.

The thrust error due to expulsion gas temperature change, dFGT,

will then be 8F /8T x dT. A plot of dFGT as a function of burn time is

given in Figure H-4.

ERROR IN THRUST, dFGT’ POUNDS
e S

0.07
\

0.05 \

~—

0.03 1 11 1

010 50 100 200 300

BURNING TIME, t _, SECONDS

b’

Figure H-4. Error in Midcourse Propulsion System Thrust (3¢)
Due to Expulsion Gas Temperature Changes as a
Function of Burn Time

The remaining error source is the ability to measure the pressure
of the simulated space vacuum environment. The error, due to vacuum
measurement, dFV, is a combination of the errors associated with the
pressure measurement and errors introduced in variations of Ae due to

manufacturing inaccuracies.

72




apaa/apam error due to vacuum measurement accuracy is

Transducer calibration error 0. 03 percent
Transducer measurement 0.25
Recorder 0.25
8Paa
5D = 0.53 percent (30)
am

The full range of the transducer on is 1 psia for a pressure
measurement at 120, 000 feet of approximately 0. 06 psia. The nominal

nozzle exhaust area is 3. 12 square inches.

The error in thrust due to inaccuracies of measuriug vacuum

pressure is:

oP
_ aa

vm = OP
am

dF xPV x A

o en
where Aen is the nozzle exhaust area.
dF = 0.0053 x1x3,12 = 0.000165 1b (30)
vm

The error associated with fabrication inaccuracies in the nozzle
exhaust area is approximately +0. 010 inch variation in the effective
exhaust diameter. This effective variation includes inaccuracies in
nozzle contour and concentricity. The resulting change in nozzle area

would be:

0.785 (1.99 +0.010)% = 0.651 in?

The nominal back pressure in the test cell is 0. 06 psia. The error
in thrust, therefore, would be dva = 0.651x0.06 =0.0391 1b (30).
The total error in thrust resulting during the blowdown mode of operation

is summarized in Table H-1.

The last two errors in Table H-1 are independent of burning time,
while the others are not. The proportional impulse errors are summed

as a function of time in Figure H-5.
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Table H~1. Blowdown Mode Thrust Errors

3¢
Error Source Symbol Thrust Error
(1b)
Spacecraft
Tank pressure transmittal deS Figure H-1
Test stand
Tank pressure setting det Figure H-2
Thrust measurement dF Figure H-3
Expulsion gas temperature change ngt Figure H-4
Vacuum measurement dF 0.0165
vm
Thruster nozzle area dFVf 0.0391
60
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Figure H-5. Proportional Impulse Error (3¢) Versus Burn Time
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3.2 Nonproportional Errors

In addition to the above blowdown mode impulse errors, errors

are also associated with thrust initiation and termination.

The impulse unpredictability during start involves variations in
explosive valve opening time after the fire signal has been given and the
timer sequence initiated. It is also affected by variations in fluid
transport time since this occurs when thrust buildup commences. The
timer is programmed to terminate thrust after a fixed increment of
time. Any changes in starting time, therefore, affect the total impulse

imparted prior to thrust termination.

Changes in propellant transport time are influenced by unccrtainties
in tank pressure since this affects the pressure drop available to drive
the fluid and by the temperature uncertainties of the propellant since this

affects the viscosity of the fluid and the resultant resistance to flow,.

The variations associated with propellant ignition delay are
assumed to introduce no additional errors because although the starting
time is delayed, the accumulated propellant when it reacts will produce
an overpressure and additional impulse which will tend to compensate

for the impulse lost from the starting delay.

Variations in valve opening time are about 0.004 second. This

can result in a 0.2 lb-sec uncertainty.

The transport time required for the propellant to reach the injector
is about 0.017 second based on 3 inches of 1/4-inch manifolding and
nominal temperature and tank pressure. Assuming a 10 percent varia-
tion in time would result in a 0.0017 second change. The total impulse

variation would be 0. 085 lb-sec.

The errors associated with thrust initiation are summarized in
Table H-2.

The impulse errors during thrust termination are different from
those associated with either thrust initiation or during the blowdown mode
since they are not associated with the timer during the thrust termination

sequence.
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Table H-2, Thrust Initiation Errors

Error Source 30 Impulse Error
Valve opening 0.008 sec x 25 1b thrust = 0.2 lb-sec
Transport time 0.0034 sec x 25 1b thrust = 0. 085 lb-~sec
Sum of the squares 0.0472 lb-sec
RSS 0.217 lb-sec

Since the degree of dissociation of the fuel is very nearly independent
of flow rate and chamber pressure, the ratio of specific heats and molec-
ular weight will be nearly constant. The thrust coefficient and character-
istic exhaust velocity will then be functions of temperature. The specific
impulse will then be proportional to the square root of the temperature

only.

The impulse error is therefore wholly dependent on the uncertainties
associated with the quantity of propellant flowing through the engine during
the shutdown sequence. Therefore, the uncertainties to be considered
are valve closing time, tank pressure (or expulsion gas temperature),

and propellant temperature.

The uncertainties in propellant manifold volume will be eliminated

by calibration firings prior to flight.

The propellant flow rate as a function of when the shutoff valve
is closed can be obtained from Figure H-6. With a total closing time
uncertainty of 0.008 second the propellant passing through the valve
can be calculated. Multiplying the propellant quantity by 230 seconds of

impulse gives the impulse error involved.

The error due to expulsion gas temperature uncertainty is mani-
fested in a tank pressure uncertainty with respect to which blowdown
calibration curve is being followed. The change in flow rate due to
expulsion gas temperature errors obtained from Figure H-6 is

0.003 lb-sec for a 40°F temperature excursion or 0, 000075 lb-sec-°F.
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Figure H-6. Propellant Flow Rate Versus Burning Time

Assuming a total uncertainty of SOF, as for the blowdown mode
analysis, results in 0.000375 lb-sec error. This quantity multiplied
by the 0.008-second valve closing uncertainty gives the error due to gas

expulsion temperature change which results in the pressure change.

The propellant temperature uncertainty results in variations in
specific gravity of the propellant which influences the amount of propel-
lant flowing during the 0.008-second valve closing uncertainty. The
previous quantities of propellant were computed based on the specific
gravity at 70°F. The effect of propellant temperature is calculated by
determining the variation of the propellant quantity as a function of

specific gravity change over an approximate total 5°F excursion

uncertainty.

The variation in density of hydrazine with temperature is shown in

Figure H-7. In a 5°F excursion in temperature, the specific gravity

varies 0.002 gm/cc.
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Figure H-7. Density of Hydrazine/Temperature

The results of the above thrust termination uncertainties are shown

in Figure H-8.
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Figure H-8., Thrust Termination Error (3¢) Versus Burn Time
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All errors given in Table H-2 and Figures H-5, H-8, and H-9 are
. summed in Figure H-10. On the basis of this data, and assuming a space-
craft weight of 492 pounds, the velocity increment error as a function of

‘ velocity increment is plotted in Figure H-11.
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Figure H-9. Nominal Total Pulse Versus Midcourse
Propulsion System Burn Time
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APPENDIX I

RELIABILITY PARTS COUNT ASSESSMENT
COMPUTER PROGRAM

1. SCOPE

PARKA 3 is a revised and augmented version of PARKA, a
Fortran IV computer program designed to permit rapid reliability
assessments of rather complicated systems, in which parts are assumed
to follow the exponential failure law. The basic processing block is a

subsystem which consists of some configuration of units. Unit failure

[ 6]
$d
n
1]

13
0O
M
(1

rate informaiion cau Le 1enal in a pre-
liminary assessment, it is derived from part count data supplied by the
cognizant engineer on transmittal forms which permit direct keypunching.
So called ''logical equations'' are supplied which permit the computer to
analyze the configuration, each equation representing a portion of the
reliability network with subsequent equations embodying previous ones so
that ultimately the subsystem is defined. To permit greater flexibility,

the starting point for the logical equations is at a level of redundancy one
step higher than the units themselves, i.e., at the '"basic element" level.
A basic element is defined as some redundant configuration of a single
unit: (a) n such in parallel, x of which must work; (b) n such in standby
redundancy where the standby units may have a nonzero failure rate when
"off" but where the switch is ideal. Of course a single unit is included in
the above as a special case. Associated with each basic element is a set
of L-factors which are analogous to K-factors but pertain only to the
specific basic element rather than the system as a whole. These are use-
ful in accounting for units that are ''on' for some but not all mission phases
and for units that are required for mission success only during certain
mission phases. The program multiplies the unit failure rate by the
L-factor for a given mission phase before calculating the element reliability

for that phase.

The parts within a unit are considered, usually, to be in a series
reliability configuration. Indeed this must be the case for units that are

subsequently made standby redundant since the algorithm used assumes
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an exponential failure law for the unit. Provision is made, however, for
calculating a conservative bound to the reliability of a completely redundant
unit, i.e., one in which no single part failure causes unit failure. Of
course, such units should not be made standby redundant since improper

calculation will result.

Up to seven mission phases can be specified and the output for each
element consists of a vector of cumulative reliabilities through the in-
dicated phases. If the individual phase is desired (i.e., the conditional
probability of surviving the phase given that it is operating at the start),
this is obtained by a simple division. These reliability vectors are assem-
bled into a matrix with rows corresponding to the defined elements. An
element is defined if it is specified as a basic element or is defined by a
logical equation. In general, the input formats are quite liberal; numbers
need only occupy their respective fields and need not be justified; blank

columns are ignored.

2. USING THE PROGRAM

2.1 Step l

Prior to any particular application, a deck of standard generic part
failure rates is assembled. A card is prepared for each part type listed
on the parts count input form consisting of the part item number, a short
alphabetic description, failure rate source, four failure rates corres-
ponding to digital and analog use for both standard and high reliability
application, and the number of connections per part. The cards must be
ordered to correspond to the parts count form, on which the parts are
ordered left to right on each line and continue on succeeding lines (68
parts in all). For programs using special parts not enumerated on the
form, additional cards are used to augment the failure rate deck. The
special parts are assigned unique consecutive numbers starting with 69
and not exceeding 150 and a corresponding card is added to the failure
rate deck. These newly defined numbers are then used to complete the
parts count form in the spaces provided. The failure rate deck must end
with a blank card.
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2.2 Step 2

The parts count form is filled out by the cognizant engineers, one
form per unit. Upon receipt of the forms, the reliability analyst edits
them and assigns unique consecutive numbers to the units within each
subsystem and enters these numbers at the top of the form which will
then be punched in columns 2 and 3 of each component cards to identify
the unit. Columns 73 to 80 of each card are punched with the information
entered in the block at the top right of the form which should contain some
sort of subsystem identification. A list of all the unique special parts
appearing on the forms is prepared and part type numbers assigned as in
Stcp 1. The forms are then completed by writing the corresponding part
type numbers in the shaded blocks preceding the indicated counts for

these special parts.

2.3 Step 3

For each unit a unit description card is prepared listing unit number,
analog or digital indicator, part level redundancy indicator, short title,
and, if unit failure rate is fed directly, Z )\i, Ekf, Z k? , Wwhere )\i are
the part failure rates (bits). 2, )\.12 andZ)\? are not needed if the unit is
not part level redundant. For units which are part level redundant, these
quantities improve the accuracy of the computation but are not essential.
When calculating unit failure rates from parts count data, the program
also computes 2 )\.12, Z )\3 which can then be used directly in subsequent

runs.

Steps 2 and 3 constitute the bulk of the work to prepare the data for
an assessment. Other input cards will be explained in their appropriate

places in sequel.
3. ORGANIZATION OF THE INPUT DECK

The basic input block is a subsystem. Within a subsystem, the
data cards can be in any order with the exception that logic cards (defined
later) must be in logical order. Various classes of input cards, distin-
guished by the character in column 1, are recognized by the program. An
asterisk in column 1 is used to indicate the end of a subsystem and, thus,
by definition, a subsystem block is all cards between asterisk cards

(except the first which is not preceded by an asterisk card.
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The type of cards permitted within a subsystem block are:

Column 1 Type
C Component count card
U Unit descriptor
H Subsystem header
B Basic element specification
L Logical equation
¥

End subsystem

No others are valid and, if found, cause a skip to the next subsystem, if
any. Card types '""C'" and ""U'" have been essentially defined above. 'H"
is a subsystem title of 71 characters and is optional. '"B'" and '"L'" types
are used for redundancy calculations (explained below) and, if omitted,

the program assumes a series configuration of units for the subsystem.

For a total system, the subsystem blocks are stacked one behind
the other. A '"$'" (column 1) card is used to delimit a system and follows

the asterisk card of the last subsystem.

The first four cards of a system set carry no special type character
in column 1 and are assumed to be present; thus, none can be omitted.

They are:

(a) System Control Card. Selects high-reliability or standard
option, selects connection failure rate option, selects boost
survivability option, selects "G@PBAD" option (defined below).

(b) System Title. (A blank card may be substituted)

(c) Mission phase time increments

(d) K-factors for mission phases

(c) and (d) may be blank in which case no time analysis is made and only
failure rates are computed. K-factors are assumed 1.0 unless otherwise

specified.

As many systems as desired can be processed sequentially, each
ending with a "$" card. The entire stack is preceded by the failure rate

deck of Step 1, Section 2 which applies to all succeeding systems.

The last system is followed by an "X" (column 1) card which causes

exit off the computer.
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One further option is available. If a "Y" (column 1) card is sub-
stituted for the "X'" card, then instead of exiting, the computer reads a
new failure rate table as in the very beginning and another set of systems

is analyzed starting all over. Ultimately an '"X" card must be present.

4. REDUNDANCY FEATURE

If redundancies are present among the units of a subsystem, these
are described by the two card types '"B' and "L'" which are, respectively,

the basic element specification and logical equation cards.

A basic element is considered to be either a binomial combination
of a single unit, i.e., a parallel network of n identical units of which X
are required for success, or else n identical units 1n standby redundaucy
with perfect switching, and where the standby units may have a nonzero

failure rate when "off'.

The logical equations permit the construction of parallel-series
configurations of basic elements and/or elements previously defined by a

logical equation. A logical equation is best described by an example:
20 = 1#2%3+4%5+ 6% T+6%7

In the above example, 1, 2, 3, 4, 5, 6, and 7 are basic elements or pre-
viously defined elements. The new element, 20, is defined to be 1 '""and"

2 "and" 3, "or'" 4 "and" 5, "or" 6 "and" 7, "or" 6 "and" 7 where the * is

interpreted as ''and'' and the + as ""or'. Thus 20 represents the network.
O—)—0)
N %
D—0)
o/ 2/
(D ——(7)
O©—0O
_O—
o/ —/
A following equation may now use ''20" as previously defined, e.g.,
21 = 20%7, which now adds element 7 as an "in line' element to the above
network.

No parentheses are allowed and, hence, the most complicated network
which can be described in one equation is a parallel network, each branch
of which contains series elements. Since defined elements can be used in

subsequent equations, this is no essential restriction.
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A presently constituted, the logical equations can only be one card

long.

The above example of a logical equation (or more properly, a net-
work equation) was purposely kept simple in that the operands are given
as single numbers. In actuality, the computer interprets each operand
as a possible 9-digit number of the form XXX YYY ZZZ indicating

Ny N Ny
and "Nl out of NZ” redundancy of element N3. This notation permits an
entire group of units (defined as N3) to be made repetitively redundant.
Leading zeros need not be present. N2 = 0 is interpreted as N2 = 1 and
Ny
out of 1" of N3, i.e., the single element, N3. 1f N2 # 0 then care must

is ignored. Thus, N3 alone (as in the above example) is read as "'l

be exercised to insure that N1 is properly indicated. When N‘2 4 0, Nl= 0
indicates simple standby redundancy which can only be a proper application
when N3

configuration of exponential elements. N2 40, N1 # 0 is taken as the

refers to an exponential device, i.e., N3 represents a series

usual binomial redundancy case of “Nl out of NZ" required. If N, >N,

N1 is set to NZ.'

Network equations (identified by "L'" in column 1) are punches in
the card starting with column 3 (column 2 is left blank) and consist of the
element number being defined followed by an = sign. The right side con-
sists of operands as described above alternating with operators (+ or *).
Blank spaces are ignored and may be freely used for legibility. Any
character other than blank, *, +, =, or numerals will invalidate the
equation. Also, the equation must be properly formed (no two operators

in succession, e.g.).

As presently constituted, the program accepts up to 100 each of

basic elements and logical equations.

The machinery outlined above is sufficient for most assessment
problems and is quite rapid in execution. There are systems, however,
whose reliability logic cannot be expressed as simple networks amenable
to the methods above. Included in the program, then, is an algorithm
completely different from that for the network equations described above

which, unfortunately, runs considerably longer. This method is based on .
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the theorem for the probability of the union of events and uses a Boolean
equation rather than a network equation. These Boolean equations are

written in a format exactly like network equations except that now a "B"
is entered in column 2. The Boolean equation now represents the event

relations which yield success, e.g., in CC.1 CC.2
L B 20 = 142%344%6% 2% 3+ 1% 3%5% 6+ 4%5%6
1%2%3 represents the joint event of elements 1, 2, and 3 succeeding, etc.

The union of the four terms enumerates that subjset of the truth
table corresponding to success. Of course, the operands are interpreted
as single numbers rather than as triplets as for network equations. As
before, the left side number represents the new element being defined.

The running time to process a Boolean equation varies as 2" where n =
number of terms (number of + signs plus 1). Again, no parentheses are
permitted so that the equation must be written as a sum of terms. Because
of the increased running time involved, Boolean equations should not be

used unnecessarily, i.e., when network type equations will do.

Although logic equation cards can appear anywhere in the block of
cards comprising the subsystem, among themselves they must be in
logical order, i.e., no equation can refer to an element on its right side
which is not either a basic element or an element defined by a previous
equation. Thus, the antecedents of an equation must be physically ahead
of the equation in the subsystem block (except that basic elements can be

anywhere).
5. RESULTS

Following is the printout produced by the PARKA 3 program for the

Advanced Planetary Probe. In this printout the following abbreviations are

used:
CONNEC . . . . . . . . .Connections
CS. .. ...+« .+ . . «Contact sets
pip ... . . . . . . . .Dipped
GT. ... ... . . . . .Greater than
HV ... .. . . . . . .Highvoltage
Iov .. . ... . . . . .Low voltage
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LT .
MEM. CR.

MU. LR. BD. .

RELY.
RELY, L .
SI

SLD

SwW

TERM
TRF . . .
VAR
VARAC .
WNDGS .
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. Lower than

. Memory core
. Multilayer board
. Relay
. Latching relay
. Silicon

. Solid

. Switching

. Terminals

. Transformer
. Variable

. Varactor

. Windings
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APPENDIX K

NONGRAVITATIONAL TRAJECTORY PERTURBATIONS

1. SOLAR PRESSURE

1.1 Radial Component of Solar Pressure

For an antenna dish with ideal absorption (ao = 1) the solar pressure
acts purely in radial direction and produces in effect a reduction of solar

gravity g o by the amount

a = Frg® - PoAgGB
w rZW

if the factor cos £ in Section 2. 4.4 of Volume 2 is approximated by l.

At r =1 AU the value of a is

P Ag
a, = Lﬁ—@— = 1.14x 1078 ft/sec?

ke
for an assumed spacecraft weight W =550 1b and antenna aperture area

A =200 ftz. The magnitude of solar gravity at 1 AU is

_ -2 2
oo ° 1.943 x 10 “ ft/sec

The resulting relative gravity variation is thus given by

4

€ = =“|;“' = 0.587x 10"

where ' designates the reduced gravitational constant corresponding to

g@ o~ & Figure K-1 is a sketch of the trajectory perturbation

" The final design ended up slightly less than 500 pounds, increasing the
effects computed here by the ratio 550/500, or a 10 percent increase.
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\\ PERTURBED
\JRAJECTORY

= ———

NOMINAL
TRAJECTORY

. Figure K-1. Nominal and Perturbed Trajectory (Exaggerated)
Resulting from Solar Pressure

resulting from the reduced value of u' for identical launch conditions at

periapsis. The perturbation effect at aphelion is expressed by

Since both trajectories have the same perihelion distance and velocity we

obtain
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or

M - B (1-€)
rp r
r_a+1 —-R—ra(l+6)+1

from which follows, for small values of §,

Ta
6:e<1+_>=7e
r
p

where r_ = 6 AU and rp = 1 AU of the sample trajectory have been used.

Hence the aphelion perturbation due to purely radial solar pressure is

6 = 4.10x 1074

Thus

3

r;-r = 6ra = 2.46x 10"~ AU 368x103km

To the perturbation & r, at aphelion corresponds a radial perturbation at

the crossing of the orbit of Jupiter. This is illustrated in Figure K-1,
which shows the nominal and perturbed spacecraft trajectory and the
geometry of Jupiter encounter assuming a massless planet. In first
approximation, the spacecraft distance at the true anomaly N pr of the
nominal encounter can be scaled in the ratio of the perturbed and unper-
turbed aphelion distances

4

sz = rj(1+6) = 5.1(1+4.1x10 ) AU

Thus

6, = 2.09 x 10" AU = 313x 10° km

The spacecraft crosses the Jupiter orbit at a distance ASl from the

nominal encounter, given by
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Sr.

AS. = —d = 2.67x 103 AU = 400 x 10> km
1 tan Gj

A flight path angle Bj = 38 degrees at the nominal encounter is used in

this approximation.

The time arrival t! of the spacecraft at the true anomaly 7
arr arr

differs from the nominal encounter time, and is given approximately by

| I

= =t

arr T

where t, are the nominal and perturbed arrival times at n ;

t
rr’ tarr arr’
T, T'are orbital periods of the nominal and perturbed trajectory. The

ratio of orbital periods is derived from the perturbation of aphelion

distance,
T! (a+6a)3 -4
2 o\ 2T0) M o~y 4 1.56 = 1+6.15%x10
T 3
a” p(l-e)
Hence
_ -4
té.rr = 650 (1 +6.15x 10 7) day
and
Atarr = t;rr -t .= 0.40 day = 9.6 hours

after nominal encounter. During this time interval the spacecraft would

be traveling a distance

AS = V___ At = 335x 10> km
(o] arr arr

where Varr = 31, 800 ft/sec is the nominal heliocentric arrival velocity
of the spacecraft.

The distance of closest approach, or miss parameter, AB is found

with the aid of Figure K-2, which shows the relative geometry of the
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) __ _JUPITER ORBIT _
X 43,
/ AR \<9noae TRAJECTORY
/ PROBE ARRIVAL ASYMPTOTE RELATIVE N
/ TO JUPITER ~

Figure K-2. Relative Geometry at Encounter

nominal and perturbed trajectory at Jupiter encounter, ignoring the effect
of the planet's gravity field. The right triangle JLK in this diagram corre-
sponds to the triangle JLK in Figure K-1. The sides of this triangle

JK = Srj and JL = AS1 have been previously computed and yield

KL = 508 x 105 km

At the nominal encounter time torr the spacecraft is at point N,, a dis -
tance AS from K and a distance AS, =173 x 103 km from L. AB is

given by the relation

AB

T
>
[€)]

)
D
[€)]
)
.S
~——
<
©
H
H
1))
[ )
=]
@

which yields

AB = 124 x 10> km

for the distances ASl and ASZ obtained above, and the velocities

Vj = 42,800 ft/sec = Jupiter orbit velocity
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V.pr - 31,800 ft/sec = nominal heliocentric probe
arrival velocity
Viel = 26, 400 ft/sec = relative probe velocity

This miss represents the effect of radial solar pressure, in the case of
ideal absorption (o = 1). It is seen that AB varies in proportion with the
aphelion perturbation éra since the sides of the triangle JLK and hence
ASl and ASZ are proportional to this quantity, which in turn is propor-

tional to €.

The radial pressure perturbations resulting from nonideal absorption
are obtained from the above results by varying the radial component Fr .

This yields:

Absorptivity

Distances in 103 km 1.0 0.92 0. 32
Predictable Deviations
Aphelion perturbation 6r 368 388 535
Miss parameter AB 124 131 180
Unpredictable Deviations (30¢)
Uncertainty Aa - +0,02 +£0.05
Aphelion perturbation 6ra - +4.8 +12.3
Miss parameter AB - 1.6 +4.2

1.2 Transverse Component of Solar Pressure

The nonideal absorption represented by the absorptivity values @y
and @, gives rise to nonzero transverse components Ft of solar pressure.
The resulting aphelion perturbations are obtained by first determining the

velocity increments AVt; accumulated during time intervals in which

positive or negative transverse components Ft are acting on the spacecraft

These are found by integrating the acceleration term, i.e.,
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tl T

t t
g 2 gn P A 2 .

av, ==& [T par = Lo 2@ o [T sind g

{ 3 w

1

over intervals of t; < t<t, of positive or negative excursions of the
quantity sin 2¢&/r” and applying the resulting velocity increments at dis-
crete trajectory points. The error sensitivity of the aphelion radius with

respect to transverse velocity increments AVti is given by

or r. V. -r V.cos?®6
a i a a

i

oV, v 2.
1 a

H -
mlt

where

a velocity at aphelion

i velocity at radius T,

0.
i

flight path angle at radius T,

The computation of the resulting transverse solar pressure effects

is summarized below (distances in 103 km).
Absorptivity
oz1=0.92:h0.01 a2=0.32:l:0.05
Predictable Deviations
Aphelion 1.1 9.5
Miss parameter 0.4
Unpredictable Deviations (30)
Aphelion 0.28 0.70
Miss parameter 0.10 0.24

The uncertainties in the above tabulations are those due to insuffi-
cient knowledge of the exact value of absorptivity a. Uncertainties
resulting from unpredictable variations of the solar radiation constant
P, during the transit of the spacecraft are listed in Section 7. 4.4 of

Volume 2.
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2. UNBALANCED ATTITUDE CONTROL FORCES

To determine the cumulative effect of attitude control forces as a
source of trajectory perturbations it is necessary to establish the magni-
tude and direction of these forces. This computation also provides an

estimate of the required extra amount of attitude control propellant.

The asymmetrical solar pressure effect and its compensation by an

attitude control torque is given by

T

I
r

1

For the case of ideal absorption (ao = 1) the solar pressure torque can be

expressed by

T, = PAlzsing cos §

Hence

P A¢{
o
1 2 4

2 sin 2 &

where

£, = 6.25 feet = moment arm of attitude control jet
measured from c.g.)

£, = 2.25 feet = moment arm of center of solar pressure
(measured from c. g.)

The propellant consumption for maintaining the equilibrium is given by
T T
F P AY F .
-1 f ___ o 2 f sin 2¢
AW, =3 |F1|°"c 211 z - 4t
sp © sp 1 o r
Using the above stated values for A, £ 1° and 12 » a specific impulse

Isp = 60 sec for the cold gas attitude control system, and the magnitude of
the integral
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T
o 6
J = f —lein2§ldt = 4.64x 10" sec,
o r

we obtain for the total gas consumption

AWl = 0.2711b

Actually, due to the increase in the radial solar pressure component Fr
resulting from partial reflection of the incident radiation, this value would

be increased by 45 percent in the case of a, = 0. 32. Hence

AW'1 = 0.3951b

However, in this case the effect of the transverse pressure component Ft

which opposes the radial pressure torque

_ _ 1 sinZé
T2 = Ftllcosg = §(l—a)PoA11 >

r

must also be taken into account. One half of the torque increment due
to the term 2/3 (1-a) in the radial solar pressure component is balanced

by the transverse pressure component and hence the total gas consumption
AW'I' = 0.3331b

is obtained.

The precession torque required to cause the spin axis to follow the

relative motion § of the earth-line is given by

FZEI = Ilwltl.t

where

FZ = required precession force (1b), orthogonal to orbit
plane, positive downward
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11 200 slug ftz, spin moment of inertia

@y 0.5 rad/sec = 5 rpm, spin rate

We can obtain the impulse required per degree of tracking motion
At 191

F, AU = 3 = 0.278 1b sec per degree

The velocity increment accruing from F, becomes

g3 F2 2
AV = T&"‘ﬁAt x 1.63x 10 ~ ft/sec per degree

where W = 550 1b is the assumed spacecraft weight.

This AV corresponds to an expenditure of gas per degree of tracking

motion

I) v

2 !leSp

AW - 4.65x 107> 1b/deg

assuming a specific impulse Isp of 60 seconds for the cold gas attitude

control jet.

The total cold gas consumption for the earth tracking task is

obtained by integration of |¢| during the entire mission. Thus

. Tw Ty
AW, = 3 f lF2|dt = AW, f Mdt = 0.561b
sp © )
where the value
Tr .
f |§fat = z |6u] = 120 deg

(o)

was obtained by summation of angle variations |A¢| between maxima and

minima of the Y(t) curve in Section 7. 4.4, Volume 2, irrespective of sign.
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Perturbations due to the unbalanced attitude control force applied
to compensate for asymmetrical solar pressure was computed in the
same manner as the effect of in-plane transverse solar pressure com-
ponents, by applying discrete velocity increments in alternating direc-

tions. The resulting aphelion perturbation are

6ra0 = 10.3x103k1n for a = @
3 3

6ral = 10.9x 10" £0.14 x 107 km for ¢ = @y

6r . x 15.0x 103 £0.35% 10> km fora = a

a2 : * 2

Perturbations due to the unbalanced attitude control force applied
to achieve earth tracking are normal to the orbit plane. The orbit

geometry diagram shown in Figure K-3 explains the effect of normal

PERTURBED
TRAJEJERL ————~_

NOMINAL
TRAJECTORY ~

y, rp SIN (7p = n.) -~

~
~

/
y = NODAL LINE

7/
1

ASn =20 g SIN(p-m)

Figure K-3. Geometry of Out-of-Plane Perturbation

velocity increments AVni on the inclination of the orbit plane, which is

expressed by
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where Vh = Vi cos Oi is the horizontal velocity component at the point of
application of Avni - The diagram also shows that the resulting out-of-

plane deviation Asni at encounter of the target planet at distance T and

true anomaly N is given by

AVni sin (nT - ni)
AS = r
n Vi cos Gi T

The total effect of alternating intervals of positive and negative
perturbing forces is approximated by applying the sequence of impulses
Avni at points Pl’ PZ’ P3 shown in the time history of the earth-line
angle .

The computation of the total out-of-plane perturbation at encounter
yields

As_ = -32.9x 102 km

i.e., an excursion in downward direction.

The uncertainty in this value is essentially the uncertainty in the
moment of inertia I1 elsewhere estimated at 1 percent and the uncertainty
in 11 which is believed negligible in comparison, leaving

As_ = ~32.9 x 105 £ 0.33 x 10> km

3. MICROMETEOROID IMPINGEMENT

To determine a conservative estimate of perturbations due to
micrometeoroid impingement a momentum multiplication factor Q = 3
is assumed, although all particles weighing in excess of 10-7 gram can
be expected to penetrate the antenna dish structure entirely at impact
speeds of 45, 000 ft/sec and above. In these cases a multiplication factor
Q <1 would be a more realistic assumption. In view of the very small
relative magnitude of the net perturbation effect contributed by this source,
only the radial component of the momentum exchange will be considered

here.
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Figure K-4 shows three typical micrometeoroid flux densities
designated C, D, and E which are applicable to various regions of the
interplanetary space. A combination of fluxes C and D is assumed to

apply in regions other than the asteroid belt. The combination of fluxes E

FLUX DISTRIBUTION FORMULA (iTH SEGMENT):
Ni =a mi_bi

FLUX E, D = (IN ASTEROID BELT) m

E,D
FLUX C, D = (ELSEWHERE) me b=
0 _
g
0 N
g 2N I
@ FLUX E (MARSHALL)
& N
o~ - _
s 4 ~ N
8 S
E N -4,2
-6 — - — 10 f°]
~ FLUXC N
4 (WHIPPLE)
v
g 8 nn B
< N
g
u N
P - .
& -10 "c A
2
:
2 FLUX D
= - T "7 7 (VOLKOFF)
z
0
S
-14 i
-16
-10 -8 -6 -4 -2 0
LOG m (GRAMS)

PARTICLE SIZE

Figure K-4. Model of Micrometeoroid Flux Assumed in Trajectory

and D will be applied in the asteroid belt. The effective integrated mass

of particles impinging per meter? per second is derived from"

M; = bf _11 L.-l - 11)__1 grams/mz sec
1 1 i
(mi)min ( i)max

In a flux distribution composed of two straight segments as shown in
Figure K-4 for the combinations C, D and E, D it can be shown that the
integration process leading to this equation and the evaluation of the

integrated mass uses the value M or M of particle mass at the
C,D E,D

b3
G.J. Cloutier, "Attitude Perturbation of Space Vehicles by Meteoroid
Impacts,' J. Spacecraft, April 1966, p. 523.
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intersection of the two line segments as the critical boundary value.
The intersections occur at

M - 10728 gram

10742 gram

g

Consequently, the effective integrated mass for the two flux densities

C, D and E, D becomes, respectively,

- 2.64x 10"

<

gram /m2 /sec

- 8.5x 10711 gram/mz/sec

<

Inserting these values of M and Q = 3 into the momentum exchange

equation we obtain the following incremental velocities AV:

In the region from 1 to 2 AU AV 4.02 x 1073 ft/sec

I

1

In the region from 2 to 4 AU
(asteroid belt) AV

L= 12,25 x 1073 ft/sec

In the region from 4 to 5.1 AU AV, = 3.44x 1073 ft/sec

From these velocity increments the following contributions to the
perturbation at aphelion are obtained by using the error sensitivity of

aphelion distance with respect to radial velocity increments

or r V. sin 0,
a _ _a i i
8Vr Ll V2
T a
a

Ar = 168 km
a
1
Ara = 411
2
Ar = 68
a3
ZAr = 747 km



A comparison of this result with the perturbation from radial solar
pressure shows a ratio of approximately 1:400. This result can be
verified approximately by a direct comparison of the average velocity
increments accruing during the mission from micrometeoroid impinge -

ment and from solar radiation pressure.

For the velocity increment due to micrometeoroids we obtain

1 -2
A'me = M Q Mm Vm TF A =3,03x10 ft/sec
) ave ave
where
-11 2

Mm = 5,5x% 10 gram/m" sec

ave
Vv = 45, 000 ft/sec

m
ave
T_.. = 650 days

F

was assumed. The velocity increment due to radial solar pressure is

given by
Tr
g P_oA o To A
avy = = = w4
o
where
H = 128 x 103 AU x ft/sec = angular momentum of
nominal probe orbit
Arn = 165deg = central angle to nominal intercept

The relation H = 'q r2 = constant was introduced to simplify evaluation

of the integral. The resulting velocity increment due to radial solar

pressure is

AVS = 12.6 ft/sec

The ratio Ame/AVS = 1:415 approximates the ratio obtained above

for the trajectory perturbations at aphelion and thus confirms the result
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of the negligibly small effect of micrometeoroid pressure compared to

solar pressure.

It is of interest to consider the potential effects of single impact
events of micrometeoroids capable of causing the spacecraft to lose
precise earth orientation and thereby to lose communication system lock-
on. The momentum exchange resulting from single impacts (mass ml)
is expressed by the equation

AHm = Q m, Vm r
where a realistic multiplication factor Q <1 should be assumed for
particles penetrating both skins of the antenna dish. It is assumed here
that the most serious effect involves impacts at or near the rim of the
antenna dish in a direction essentially parallel to the dish axis. In order
to cause loss of lock-on this momentum change would have to be equal to
AH, = I, w; AE
which is required to rotate the spin-stabilized spacecraft by an angle A£

from its nominal earth-pointing orientation. Assuming the following

parameters:

200 slug ft2

—
il

n

AE =12 deg

the angular momentum increment will be

AHS = 40 ft-lb-sec for W= 10 rpm

20 ft-lb-sec 5 rpm

4 ft-lb-sec 1 rpm

Figure K-5 shows the number of impacts per mission and the change in

angular momentum as a function of particle mass. As a conservative
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Figure K-5. Impact Conditions Resulting in Loss of Lock

assumption we assume that flux D, E which corresponds to micro-
meteoroid distributions in the asteroid region is encountered by the
spacecraft during the entire mission, The diagram shows where the
curve of angular momentum increment AHm reaches the values required
to cause loss of lock-on for the three spin rates @y assumed. These
intersections therefore determine the momentum of a particle of mass

m, sufficient to cause this attitude change. The diagram then shows

holiv many impacts N' per mission can be expected of that particle size.
Secondly, since only a fraction of the impinging particles of that size

are near enough the rim of the dish to be of concern in this context,

the diagram shows how many events per mission can be expected to be

of this type. Assuming that the annular region near the rim comprises
approximately one-quarter of the total dish area, this fraction of impacts

is indicated by the curve labeled N'/4,
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Actually as particle size increases the momentum multiplication
factor decreases by orders of magnitude below the assumed value Q = 1.
This factor is reflected in the diagram by a number of straight lines
Q=1, 0.1, 0.01, etc., and the intersection of these lines with the crit-
ical values of AH causing loss of lock-on. The resulting values of
micrometeoroid mass m; and the number of single events per mission
are listed in Table K-1. Since the resulting micrometeoroid masses
are in the neighborhood of 1 gram and above, it is obvious that the events

considered here occur very rarely, in the order of 1072 to 1074 times
per mission. Particles of this size would, of course, in many instances

cause catastrophic damage to the spacecrait.

Table K-1. Impact Conditions Resulting in Loss of
Lock-on (For Spin Rate of 5 rpm)

Assumed Q Factor

0.1 0.01 0.001
Impacting particle mass mk(g) 3.2 32 320
A . -3 -3 -4
Number per mission N'/4 3x10 10 3x10
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